Share

Latest Documents


  • 4-July-2023

    English

    Test No. 442E: In Vitro Skin Sensitisation - In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation

    The present Key Event based Test Guideline (TG) addresses the human health hazard endpoint skin sensitisation, following exposure to a test chemical. More specifically, it addresses the activation of dendritic cells, which is one Key Event on the Adverse Outcome Pathway (AOP) for Skin Sensitisation. Skin sensitisation refers to an allergic response following skin contact with the tested chemical, as defined by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS). This TG provides three in vitro test methods addressing the same Key Event on the AOP: (i) the human cell Line Activation Test or h-CLAT method, (ii) the U937 Cell Line Activation Test or U-SENS and (iii) the Interleukin-8 Reporter Gene Assay or IL-8 Luc assay. All of them are used for supporting the discrimination between skin sensitisers and non-sensitisers in accordance with the UN GHS. Test methods described in this TG either quantify the change in the expression of cell surface marker(s) associated with the process of activation of monocytes and DC following exposure to sensitisers (e.g. CD54, CD86) or the changes in IL-8 expression, a cytokine associated with the activation of DC. In the h-CLAT and U-SENS assays, the changes of surface marker expression are measured by flow cytometry following cell staining with fluorochrome-tagged antibodies. In the IL-8 Luc assay, the changes in IL-8 expression are measured indirectly via the activity of a luciferase gene under the control of the IL-8 promoter. The relative fluorescence or luminescence intensity of the treated cells compared to solvent/vehicle control are calculated and used in the prediction model, to support the discrimination between sensitisers and non-sensitisers.
  • 4-July-2023

    English

    Test No. 491: Short Time Exposure In Vitro Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage

    This Test Guideline describes a cytotoxicity-based in vitro assay that is performed on a confluent monolayer of Statens Seruminstitut Rabbit Cornea (SIRC) cells, cultured on a 96-well polycarbonate microplate. After five-minute exposure to a test chemical, the cytotoxicity is quantitatively measured as the relative viability of SIRC cells using the MTT assay. Decreased cell viability is used to predict potential adverse effects leading to ocular damage. Cell viability is assessed by the quantitative measurement, after extraction from the cells, of blue formazan salt produced by the living cells by enzymatic conversion of the vital dye MTT, also known as Thiazolyl Blue Tetrazolium Bromide. The obtained cell viability is compared to the solvent control (relative viability) and used to estimate the potential eye hazard of the test chemical. A test chemical is classified as UN GHS Category 1 when both the 5% and 0.05% concentrations result in a cell viability smaller than or equal to (≤) 70%. Conversely, a chemical is predicted as UN GHS No Category when both 5% and 0.05% concentrations result in a cell viability higher than (>) 70%.
  • 4-July-2023

    English

    Test No. 240: Medaka Extended One Generation Reproduction Test (MEOGRT)

    This Test Guideline describes the Medaka Extended One Generation Test (MEOGRT), which exposes fish over multiple generations to give data relevant to ecological hazard and risk assessment of chemicals, including suspected endocrine disrupting chemicals (EDCs).  Exposure in the MEOGRT starts with spawning fish (P or F0 generation) and continues until hatching (until two weeks post fertilization, wpf) in the second (F2) generation. This Test Guideline measures several biological endpoints.  Primary emphasis is given to potential adverse effects on population relevant parameters including survival, gross development, growth and reproduction (fecundity).  Secondarily, in order to provide mechanistic information and provide linkage between results from other kinds of field and laboratory studies, where there is a posteriori evidence for a chemical having potential endocrine disrupter activity (e.g. androgenic or oestrogenic activity in other tests and assays) then other useful information is obtained by measuring vitellogenin (vtg) mRNA (or vitellogenin protein, VTG), phenotypic secondary sex characteristics (SSC) as related to genetic sex, and evaluating histopathology.
  • 30-June-2023

    English

    OECD Biotechnology Update

    Read our newsletter to stay up-to-date with all the latest OECD work on biotechnology.

    Related Documents
  • 15-March-2023

    English

    Safety of novel foods and feeds and on the harmonisation of regulatory oversight in biotechnology

    These two documents compile information on activities related to the assessment of the safety of products derived from modern biotechnology, environmental safety (biosafety) and the safety of novel foods and feeds, at the international level between April 2021 and May 2022. The information was provided by OECD Members, partner countries and observer organisations participating in the work.

    Related Documents
  • 3-May-2022

    English

    Safety Assessment of Transgenic Organisms: OECD Consensus Documents

    The OECD biosafety consensus documents identify elements of scientific information used in the environmental safety and risk assessment of transgenic organisms which are common to OECD member countries.

    Related Documents
  • 16-February-2022

    English

    Risks from Natural Hazards at Hazardous Installations (Natech)

    Natural Hazards Triggering Technological Accidents (Natech) are accidents triggered by the impact of a natural hazard, such as earthquake, flood, or storm, on a hazardous installation, and which involves the release of hazardous substances, fires or explosions. This brochure aims to raise awareness of Natech risks and the challenges associated with their management.

    Related Documents
  • 17-June-2021

    English

    Test No. 455: Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists

    This Performance-Based Test Guideline (PBTG) describes in vitro assays, which provide the methodology of Stably Transfected Transactivation to detect Estrogen Receptor Agonists and Antagonists (ER TA assays). It comprises mechanistically and functionally similar test methods for the identification of estrogen receptor agonists and antagonists and should facilitate the development of new similar or modified test methods. The two reference test methods that provide the basis for this PBTG are: the Stably Transfected TA (STTA) assay using the (h) ERα-HeLa-9903 cell line, derived from a human cervical tumor, and the BG1Luc ER TA assay using the BG1Luc-4E2 cell line, derived from a human ovarian adenocarcinoma. The cell lines used in these assays express ER and have been stably transfected with an ER responsive luciferase reporter gene. The assays are used to identify chemicals that activate (i.e. act as agonists) and also suppress (i.e. act as antagonists) ER- dependent transcription. ER are activated following ligand binding, after which the receptor-ligand complex binds to specific DNA response elements and transactivates the reporter gene, resulting in increased cellular expression of a marker enzyme (e.g. luciferase in luciferase based systems). The enzyme then transforms the substrate to a bioluminescent product that can be quantitatively measured with a luminometer. These test methods are being proposed for screening and prioritisation purposes, but also provide mechanistic information that can be used in a weight of evidence approach.
  • 2-March-2021

    English, PDF, 2,727kb

    Guidance on Key Considerations for the Identification and Selection of Safer Chemical Alternatives

    As the demand for safer chemicals grows, the field of alternatives assessment is becoming increasingly important in guiding the transition towards safer, less toxic alternatives. A major limitation that can hinder efforts is the lack of consistent criteria for defining “safer" alternatives. This guidance outlines key considerations for the identification and selection of safer alternatives.

    Related Documents
  • 2-March-2021

    English

    Substitution of hazardous chemicals

    As the demand for safer chemicals grows, the field of alternatives assessment is becoming increasingly important in guiding the transition towards safer, less toxic alternatives. A major limitation that can hinder efforts is the lack of consistent criteria for defining “safer" alternatives. This guidance outlines key considerations for the identification and selection of safer alternatives.

    Related Documents
  • << < 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 > >>