Does government funding increase patenting in the nanotechnology field? A comparison of Quebec and the rest of Canada

Leila Tahmooresnejad – Polytechnique Montréal Catherine Beaudry – Polytechnique Montréal

International Conference of Patent statistics for Decision Makers, 12-13 November, Rio de Janeiro-Brazil

Outline

- Introduction
- > Theoretical Framework
- > Data and Methodology
- > Regression results
- > Conclusion

Motivation

- Nanotechnology has experienced rapid growth over the last two decades.
- There is no doubt that this emerging technology plays an important role in future economic development
- Nanotechnology has become an essential priority
 Government organizations have increased their investment in nanotechnology research in the past two decades

> Public funding for research facilitates the production of knowledge and is a key element for innovation in high technologies

Universities and their affiliated centers play a vital role in national innovation systems

Objectives

Measure the impact of grants on the innovation outputs of academic researchers

- > Patents
 - ≻ quantity
 - ≻ quality
- Measure the impact of technological networks (co-invention networks)
- Compare the impact in Quebec and the rest of Canada

Government Funding

- US National Nanotechnology Initiative (NNI) program in 2000
- Accordingly, Canada has initiated a variety of programs to benefit from nanotechnology development through the National Institute for Nanotechnology (NINT)
- Nanotechnology in
 - > Alberta (NanoAlberta)
 - British Columbia (British Columbia Nanotechnology Alliances),
 - Ontario (Nanotechnology Network of Ontario)
 - > Quebec (NanoQuebec)

Quebec

- Quebec government-funded research is at the forefront of the nanotechnology revolution in Canada
- NanoQuebec has conducted several universityenterprise projects to facilitate the collaboration between universities and industry
- NanoQuebec has financed different innovative projects over the past decade

Theoretical Framework (I/II)

- The literature generally finds that there is positive correlation between federal research funding and scientific outputs
- More government research funding results more papers and more patents with a lower rate
- It is of great importance for policy makers to measure the efficiency and productivity of research financing in nanotechnology

Theoretical Framework (II/II)

Citations and Claims are 'proxy'

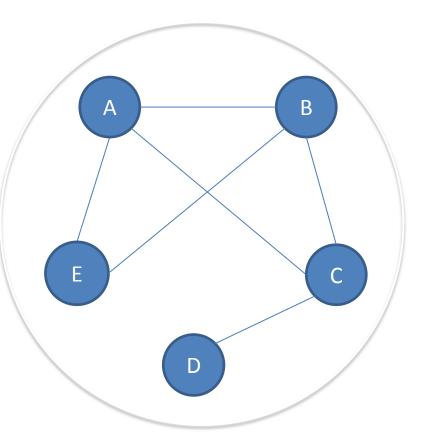
> High quality research obtains more citations

- Papers and Patents of researchers, who received funding, receive more citations
 - e.g. Patents of researchers, who received NSF funding, received more citations compared with those of other researchers in Nanoscale Science and Engineering

Data and Methodology

Data

United States Patent and Trademark Office (USPTO)

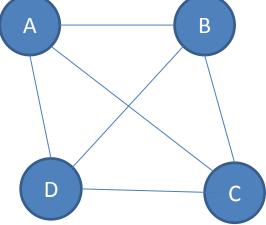

- Extraction of nanotechnology scientific patents by using specific keywords in the title, abstract and keywords
- Selection the patents where there is at least one Canadian inventor
- Selection the patents where there is at least one inventor from Quebec
- Database of granting councils

Methodology

- Matching databases
- Creating a unique identifier for each individual researcher
- Data cleaning
- Creating co-invention networks
- Calculating network characteristics and the position of researchers

Network (I/III)

- A, B and C are the inventors of a patent
- A, B and E are the inventors of a patent
- C and D are the inventors of a patent
- Degree of a node
 - Number of links that are directly connected
 - > A, B and C have 3 connections
 - E has 2 connections
 - D has 1 connection


Network (II/III)

> Betweenness centrality of a node

- is defined as the proportion of all geodesic distances between two nodes that includes this node.
- It makes the node more powerful since it can control the knowledge flow between the other pair of actors
- Geodesic distance
 - Distance (shortest path) between two nodes

Network (III/III)

- Clustering coefficient
 - If two nodes are connected to the specific third node, they may also be connected to each other.
 - It is computed as the fraction of pairs of neighbors of a researcher that are directly connected each other.

Hypotheses

Hypothesis 1: Public funding has a beneficial impact on the number of nanotechnologyrelated patents attributed to academicinventors.

Hypothesis 2: Public funding has a beneficial impact on the quality of nanotechnologyrelated patents attributed to academicinventors.

Econometric Models

 $\hat{e} NumPat_{it} \qquad \hat{u} \\ \hat{e} NumCitation_{it} \hat{u} \\ \hat{e} NumClaim_{it} \qquad \hat{u} \\ \hat{e} \end{pmatrix} = a + b_{S1}GrantAmount_{it-l} + b_{S2} \left[GrantAmount_{it-l} \right]^{2}$

 $+b_{P1}NumPatent3_{it-1} + b_{P2}NumPatent3_{it-1}^{2}$ + $g_{b}NetworkM1_{it-2} + g_{c1}NetworkM2_{it-2} + g_{c2} [NetworkM2_{it-2}]^{2}$ + $g_{bp}[NetworkM1_{it-2} \land NumPatent3_{it-1}] + g_{bc}[NetworkM1_{it-2} \land NetworkM2_{it-2}]$ + $d_{t} \stackrel{\circ}{\underset{t}{}} d_{t} + n_{i} + e_{it}$

GrantAmount3_{it-1}

> The amount of average grants that are received in 3 years preceding the patent application with one year lag

*NetworkM*1_{*it-2}</sub>*

> The intermediary position of academic –inventors in the co –invention network over 3 years preceding the patent application with 2 years lag

*Network*M2_{*it-2}</sub>*

The cliquishness centrality of academic –inventors in the co –invention network over 3 years preceding the patent application with 2 years lag

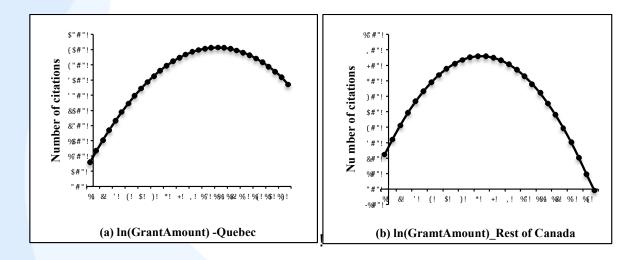
13 November 2013

Leila Tahmooresnejad - Catherine Beaudry

Results and Comparison

- > Quebec
- Rest of Canada

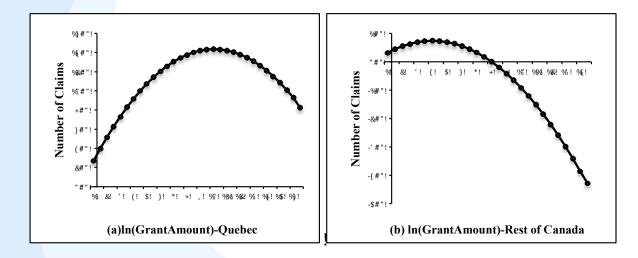
The Impact of Public Funding on Patents


The number of patents

- We could not find a major effect of public funding on the number of patents
 - > Quebec
 - Rest of Canada
- Explanation
 - Nanotechnology is an emerging field
 - > We focused on academic inventors
 - > Technological innovations require more industry involvement

Patent Quality

> The number of citation


- > Positive impact in Quebec (left graph)
- > Positive impact in the rest of Canada (right graph)

Patent Quality

The number of claims

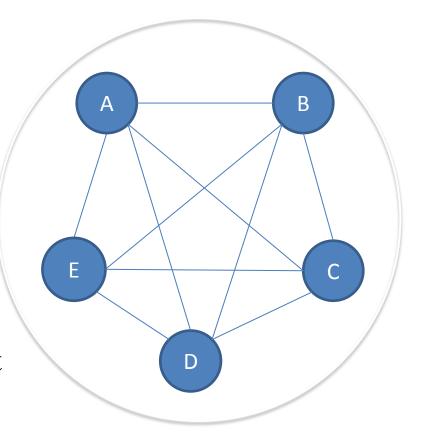
- > Positive impact in Quebec (left graph)
- Positive impact in the rest of Canada (right graph)

The Impact of Network measures on Patents

Network Measures

> Network Measure1 (Betweenness centrality)

- > We could not find a positive impact
 - > Quebec
 - > Rest of Canada


> Network Measure2 (clustering coefficient)

- Significantly Positive impact
 - ≻ Quebec
 - Rest of Canada

Network Measure2

Higher clustered groups
 result diminishing returns

Some degree of integration
 can yield better results,
 but more integrated groups
 tend to have a negative impact

Conclusion

Conclusion

More grants do not increase academic patents in the field of nanotechnology

More grants are correlated with patent quality considering a threshold

Collaboration of researchers has positive impact on both quantity and quality of patents

Thank you