
PATENT STATISTICS FOR INTERNATIONAL COMPARISONS AND ANALYSIS OF NARROW TECHNOLOGICAL FIELDS

Ivan Haščič, Jérôme Silva and Nick Johnstone OECD Environment Directorate

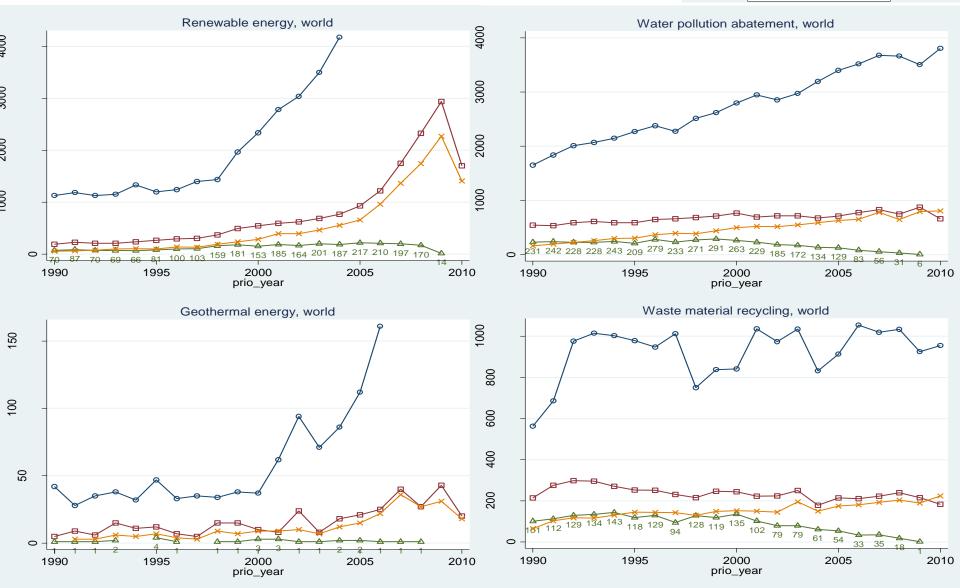
Conference on Patent Statistics for Decision Makers 12-13 November 2013, Rio de Janeiro, Brazil

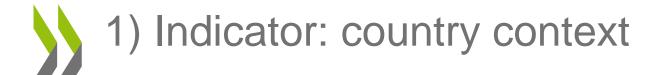




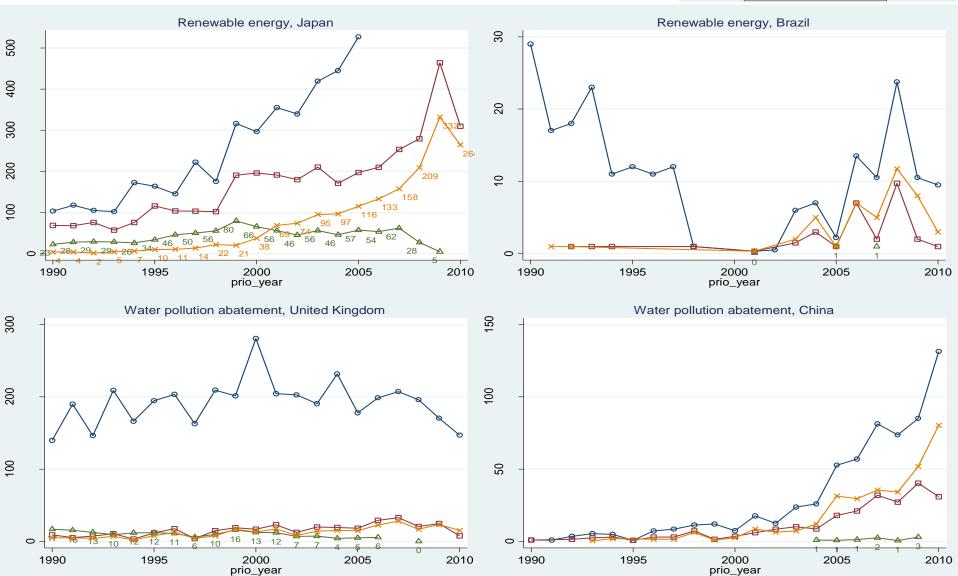
- Technological scope narrow fields (e.g. many 'environmental' techs)
- Geographic scope smaller innovators, countries with lower patenting activity (e.g. emerging/transition economies)

How to use patent data 'reliably' in such contexts?



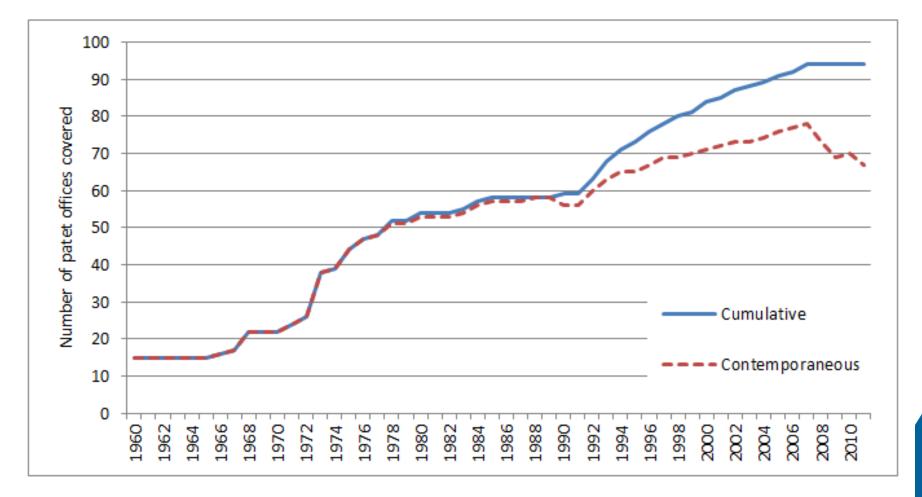


- 1) Adapting patent indicators to different contexts
- 2) Idiosyncratic issues in construction and analysis of patent statistics
  - a) Coverage
  - b) Designation
  - c) Missing info
  - d) Identification
- 3) Implications for analysis

### 1) Indicator: technological context


 →
 PF1
 →
 PF2

 →
 TPF
 →
 PCT













#### Contemporaneous and cumulative data coverage in PATSTAT APR12



.



### APR12 PATSTAT, 1980-2009:

- Complete coverage (=30): 39 offices (e.g. EP, IB, JP, US)
- Complete coverage (<30): 16 offices (e.g. DD, CS, YU)
- Partial coverage (<30): 40 offices (e.g. AR, IN, MA)
- No coverage with data on 19 application offices (e.g. TN, TH, AZ)
- No coverage with data on 129 inventor countries (e.g. VE, SA, IR)

### 2a) Spatial and temporal coverage

| Country/office                                                                                                                      | Theoretical coverage 1980-2009 |                 | Empirical coverage in PATSTAT APR12 |                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-------------------------------------|---------------------|--|
| Country/office The<br>Korea<br>Brazil<br>Mexico<br>Israel<br>South Africa<br>Hong Kong, China<br>Turkey<br>Egypt<br>ARIPO<br>Russia | Theoretical cov                | erage 1980-2009 | as Appln Authority                  | as Inventor Country |  |
| Korea                                                                                                                               | 30                             | complete        | 1921667                             | 1633271             |  |
| Brazil                                                                                                                              | 30                             | complete        | 408144                              | 74490               |  |
| Mexico                                                                                                                              | 30                             | complete        | 176070                              | 17390               |  |
| Israel                                                                                                                              | 30                             | complete        | 132758                              | 127959              |  |
| South Africa                                                                                                                        | 30                             | complete        | 132370                              | 23184               |  |
| Hong Kong, China                                                                                                                    | 30                             | complete        | 69446                               | 23408               |  |
| Turkey                                                                                                                              | 30                             | complete        | 43447                               | 27571               |  |
| Egypt                                                                                                                               | 30                             | complete        | 8474                                | 2285                |  |
| ARIPO                                                                                                                               | 25.2                           | complete        | 5524                                | -                   |  |
| Russia                                                                                                                              | 16.9                           | complete        | 479655                              | 243024              |  |
| Argentina                                                                                                                           | 28.7                           | partial         | 59471                               | 8662                |  |
| Guatemala                                                                                                                           | 27.6                           | partial         | 1010                                | 212                 |  |
| India                                                                                                                               | 27.4                           | partial         | 41207                               | 73617               |  |
| Singapore                                                                                                                           | 26.6                           | partial         | 54160                               | 30356               |  |
| China                                                                                                                               | 24.3                           | partial         | 3587728                             | 2141368             |  |
| Ecuador                                                                                                                             | 20.0                           | partial         | 7098                                | 678                 |  |
| Philippines                                                                                                                         | 19.2                           | partial         | 14701                               | 3050                |  |
| Peru                                                                                                                                | 17.3                           | partial         | 10752                               | 1116                |  |
| Morocco                                                                                                                             | 16.2                           | partial         | 11621                               | 1728                |  |
| Colombia                                                                                                                            | 14.9                           | partial         | 13458                               | 3040                |  |
|                                                                                                                                     |                                |                 |                                     |                     |  |

### 2a) Spatial and temporal coverage

| Country/office       | Theoretical coverage 1980-2009 |         | Empirical coverage in PATSTAT APR12 |                     |  |
|----------------------|--------------------------------|---------|-------------------------------------|---------------------|--|
| country/onice        |                                |         | as Appln Authority                  | as Inventor Country |  |
| Malawi               | 14.8                           | partial | 428                                 | 18                  |  |
| ΟΑΡΙ                 | 14.7                           | partial | 6819                                | -                   |  |
| Zimbabwe             | 14.4                           | partial | 2094                                | 268                 |  |
| Panama               | 13.6                           | partial | 2411                                | 1002                |  |
| Chinese Taipei       | 12.2                           | partial | 583999                              | 566918              |  |
| El Salvador          | 9.8                            | partial | 1329                                | 320                 |  |
| Malaysia             | 9.2                            | partial | 6321                                | 9516                |  |
| Ukraine              | 8.6                            | partial | 48114                               | 54103               |  |
| Indonesia            | 5.0                            | partial | 14326                               | 2146                |  |
| Chile                | 3.8                            | partial | 3445                                | 2739                |  |
| Armenia              |                                |         | 55                                  | 548                 |  |
| Azerbaijan           |                                |         | 51                                  | 1252                |  |
| Sudan                |                                |         | 31                                  | 162                 |  |
| Tunisia              |                                |         | 22                                  | 1128                |  |
| Venezuela            |                                |         |                                     | 2682                |  |
| Saudi Arabia         |                                |         |                                     | 2285                |  |
| Iran                 |                                |         |                                     | 2255                |  |
| United Arab Emirates |                                |         |                                     | 1021                |  |
| Bolivia              |                                |         |                                     | 220                 |  |



### How to distinguish 'missing' observations from zeros?

Construct coverage weights by office/year

e.g. w=0.164 if batches for 60 days in a given year

Assignment rules

| Document type         | Coverage weight                              |  |
|-----------------------|----------------------------------------------|--|
| Singleton priority    | W <sup>PRIO</sup>                            |  |
| Claimed priority      | max (w <sup>PRIO</sup> , w <sup>DUPL</sup> ) |  |
| Duplicate application | W <sup>DUPL</sup>                            |  |

- Could be more fine-grained if estimated econometrically
- Benefit:
  - Clearly identify 'true' zeros
  - Identify non-zero counts with 'low' reliability (sample selection based on threshold coverage)

# 2b) Designation of national jurisdictions in regional patent filings

Alternatives:

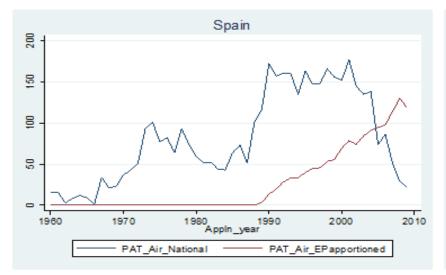
- Do nothing (most common)
- Designated countries in PAT\_EP
- Publication kind codes in PATSTAT
- PRS Legal Status database for PATSTAT

### Candidate statistics and legal status search strategy

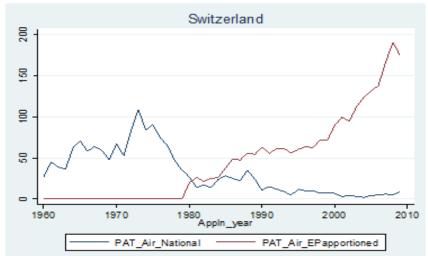
| Candidate statistic                                                                  |         | Search strategy                   |
|--------------------------------------------------------------------------------------|---------|-----------------------------------|
| <ol> <li>Propensity to designate states<br/>at application</li> </ol>                | AK-A    | prs_code=AK and publ_kind_code=A% |
| <ol> <li>Propensity to designate states<br/>at payment of designation fee</li> </ol> | AKX-RBV | prs_code=AKX or prs_code=RBV      |
| <ol> <li>Propensity to designate states<br/>at grant</li> </ol>                      | АК-В    | prs_code=AK and publ_kind_code=B% |
| <ol> <li>Propensity to pay post-grant<br/>fees (annual maintenance fees)</li> </ol>  | PGFP    | prs_code=PGFP                     |

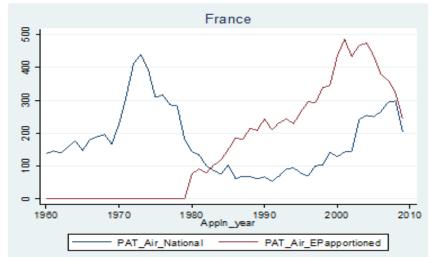
# 2b) Designation of national jurisdictions in regional patent filings

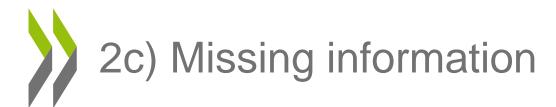
Our approach:


- Data on "payment of designation fees" to construct <u>designation</u>
   <u>propensities</u> over time for TOTPAT and apply these on EPAT
- Could be estimated econometrically for a more fine-grained attribution
- This is useful for:
  - Estimation of patent family size to construct indicators (dyadic patent family = weighted CP)
  - Apportionment of patenting within the EPO area to construct "patent stocks"

| Estir | nation o | f pate | ent fam | ily size | using El | ' desi | gnatio | n propensities |
|-------|----------|--------|---------|----------|----------|--------|--------|----------------|
|       |          | 1.7    |         | -        |          |        |        |                |


| Observed family | Estimated family size in year 2000 |
|-----------------|------------------------------------|
| EP singleton    | 2.013                              |
| EP + DE         | (2.013-0.511) + 1 = 2.502          |
| EP + US         | (2.013) + 1 = 3.013                |


## 2b) Designation of national jurisdictions in regional patent filings


#### Patenting activity at the national office versus EP-apportioned filings











### Benefit of imputing inventor information from duplicate filings

|                               | Priorities with known<br>inventor country | Priorities with known<br>inventor country<br><i>retrieved within PATSTAT</i> |
|-------------------------------|-------------------------------------------|------------------------------------------------------------------------------|
| Renewable energy (Y02E10)     | 42.3%                                     | 46.2% (+3.9)                                                                 |
| Geothermal energy (Y02E10:1)  | 54.0%                                     | 58.1% (+4.1)                                                                 |
| Wind energy (Y02E10:7)        | 52.6%                                     | 55.7% (+3.1)                                                                 |
| Wind motors (F03D)            | 53.2%                                     | 56.3% (+3.1)                                                                 |
| (Waste)water treatment (C02F) | 35.3%                                     | 38.8% (+3.5)                                                                 |
|                               |                                           | · · · · · · · · · · · · · · · · · · ·                                        |

### • Patent classifications

#### Benefit of imputing IPC symbols using the APPLN\_ECLA table

|                                        | Nb. of documents identified (appln_id's) |                       |                |  |
|----------------------------------------|------------------------------------------|-----------------------|----------------|--|
|                                        | search in search in both search          |                       |                |  |
|                                        | APPLN_IPC only                           | APPLN_IPC & APPLN_CPC | APPLN_CPC only |  |
| (Waste)water treatment (C02F)          | 433,698                                  | 448,427 (+3%)         | 199,435        |  |
| Wind energy (Y02E10:7)                 | -                                        | -                     | 62,702         |  |
| Wind motors (F03D)                     | 64,339                                   | 69,476 (+8%)          | 43,151         |  |
| Climate mitigation in transport (Y02T) | -                                        | -                     | 293,670        |  |
| Electric & hybrid cars (IPC-based)     | 113,038                                  | 128,991 (+14%)        | 71,357         |  |

## 2d) Identification of relevant documents

Classification of patent documents is not always systematic:

- National systems (ECLA, USPC, FI) only a subset of docs is classified; harmonization (CPC) helpful!
- IPC core vs advanced level
- ECLA/CPC Y02 tags
  - A valuable addition!
  - For historic series based on search algorithms using a variety of attributes in DOCDB (even those not included in PATSTAT)
  - Applications prior to ~2010 (Y02C,Y02E), ~2012 (Y02B,Y02T)
  - Assigned manually thereafter (as any other CPC symbols)
- Implications for patent searches
- More or less difficult to determine the population from which 'one draws'

### 2d) Constructing variables to normalize (or control for) non-systematic classification

|     | <i>If EPAT search strategy is based on:</i> | then TOTPAT should be constructed as:                                     | Appln_id's                                      |
|-----|---------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|
| (1) | IPC symbols                                 | All documents 'identifiable' using IPC                                    | 79%                                             |
| (2) | ECLA symbols                                | All documents 'identifiable' using EC                                     | 49%                                             |
| (3) | Keyword searches on titles and/or abstracts | All documents (families) with title<br>/abstract in the corresp. language | 58% (EN)                                        |
| (4) | YO2 tags                                    | All documents (families) that could have potentially been 'tagged'        | ?<br>(this will vary by<br>individual Y-symbol) |
| (5) | IPC or ECLA symbols                         | The union of (1) and (2) above.                                           | 80%                                             |
| (6) | IPC, ECLA, ICO, or EN<br>title/abstract     | The union of the respective counts                                        | 84%                                             |
|     |                                             | No restriction                                                            | 100%                                            |

- How to construct a corresponding TOTPAT ?
  - The same indicator (e.g. PF2, TPF, PCT)
  - The same concept (e.g. invention, co-invention, protection, citation)
  - The same type of search strategy (e.g. based on IPC, ECLA, keyword searches, etc see above)
  - An otherwise identical algorithm as for the EPAT count (i.e. treatment of idiosyncrasies, imputation, other programming details that might affect the final outcome)



- Descriptive analysis
  - Provide context; normalize
- Econometric analysis
  - Control for idiosyncrasies

3) Implications for analysis

### A. Conceptual (economic) reasons:

- Differences in inventive capacity
- Differences in propensity to patent
- Differences in patent breadth and patent 'quality'
- Other factors that might affect patenting in general
- B. Idiosyncratic (methodological) reasons:
  - Incomplete info due to differences in coverage of patent databases
  - Imperfect info on jurisdictions where patent protection is sought through regional procedures (designation)
  - Extent of missing information on inventors, applicants, patent classifications (incl. after imputation)
  - Differences in ability to identify the relevant documents due to nonsystematic assignment of classification symbols

Using TOTPAT deals perfectly with B (there is no other way), imperfectly with A (imperfect as any other proxy).



- Draw attention to issues specific to analysis of narrow tech fields in a cross-country context; esp. emerging/developing economies
- Trade-off between patent quality, data availability and breadth of technological fields
- Need to adapt choice of patent indicators to context; the "optimal" family size for a given application is an empirical question (although PF2 often suitable)
- Need to address idiosyncratic problems in the underlying data
- Do not blindly estimate on the contents of a patent database
- Solution: indicator construction + normalization (control) variables