Aquaculture Adaptation Strategies to Climate Change: An Industry Perspective

Daniel Lee BAP Standards Coordinator Global Aquaculture Alliance

OECD Workshop, Busan, June 2010

Outline

- Aquaculture Adaptation to
 - Water stress
 - Storms
 - Temperature stress
 - Harmful algae blooms
 - Acidification
- Aquaculture
 - Its ability to respond
 - The best adaptation strategy of fisheries to climate change

Adaptation to Water Stress

- More efficient use of water
 - Intensification
 - Low and zero water exchange systems
 - Development and application of better irrigation for feed crops

Farming fish to save water

Food	Freshwater consumption m ³ kg ⁻¹
Beef	100
Broiler chickens	3.5
Trout	<3.5
Channel catfish	3.3 – 6.5
Tilapia	2.8

Adaptation to Storms

- Offshore, submersible cages
- Raise construction standards for cages and moorings
- Build shrimp farms within the mangrove fringe
- Insurance

Offshore cage aquaculture, IPIMAR, Portugal

1985

Honduras

1998 Honduras

Adaptation to Temperature Stress

- Offshore, submersible cages
- Breeding technology
- GM

Breeding technology

- Hormonal sex-reversal in tilapia
- Genetically male tilapia
- Hormone induced spawning in Pangasius
- Triploid oysters
- Selective breeding for disease resistance

Genetic Engineering

- GM feed ingredients
 - Soya
 - Rapeseed (canola) oil
- GM aquaculture species
 - Salmon
 - Tilapia
- GM research in government labs is needed to help dispel worries about monopolistic private companies

Response to Harmful Algae Blooms

Increased production of nutrient consuming species

Mussels

Adaptation to Ocean Acidification

Acidification Example

Result of lab experiment

• 740 ppm CO₂, pH 7.1 causes a 25% drop in calcification rate of *M. edulis* (mussels)

Assumption

- Equates to a 25% drop in mussel production
- Economic analysis
 - Overall economic impact measured as a drop in the NPV of the mussel industry. Horizon 50-60 years.

Adaptation to Ocean Acidification

- Support research into low carbon energy technology to reduce global CO₂ emissions
- Avoid 'feel-good' solutions
- (Support free trade and adopt Doha)

Avoid the costly approach of directly cutting carbon emissions now because this will stunt economic prospects of developing nations that are most at risk from climate change and will leave them less able to adapt.

(Aquaculture is the best adaptation of fisheries to climate change.)

Aquaculture's Ability to Respond

- To demand
- By improving efficiency of resource use
- By overcoming disease shocks

Top 10 Seafoods in the USA

Aquaculture to Surpass Fisheries (Production, million mt)

Improving efficiency of resource use

- Farming <u>down</u> the food chain
- Feed
 - Improved
 - feeding technology
 - diet formulation
 - conversion
 - Integration on a global scale
- Water
 - Zero exchange systems
 - Recirculation systems
 - Integration with irrigation
- Intensification
 - e.g. Pangasius production up to 300mt/ha

Expansion of the farming of low trophic level fish

Tilapia Global Aquaculture Production

Sources: FAO (1984-2003), Kevin Fitzsimmons, University of Arizona (2004-2009), Luis Fernando Castillo Campo (Colombia and Mexico), and other anonymous sources

Example: Pangasius

Photo courtesy of VASEP

Pangasius Catfish Production in Vietnam

Low trophic level fish

Data from Naylor et al. (2000) and Tacon and Metian (2008)

Relative changes

Evidence of farming down the food chain

More efficient shrimp: *Litopenaeus vannamei vs Penaeus monodon*

- More efficient feed conversion
- Lower protein and fishmeal content in diet
- Zero water exchange systems
- Closed breeding cycle
- Domesticated, SPF and SPR strains

More efficient use of fish meal and fish oil inputs

Wild fish used in feed for fish and shellfish in 1997*

Species/group	Production with compound diets	fishmeal	fish oil	ECP	wild fish	fish in: fish
Species group	277	5 0	15	2.2	1044	5 16
	117	50	10	2.2	1944 546	<u> </u>
	705	50	10	2	0040	4.09
shrimp	/25	30	2	2	2040	2.81
salmon	737	45	25	1.5	2332	3.16
trout	473	35	20	1.5	1164	2.46
tilapia	331	15	1	2	466	1.41
milkfish	78	10	3	2	74	0.94
catfish	351	10	3	1.8	296	0.84
fed carps	2445	8	1	2	1834	0.75
					40000	
Overall	5634				10696	1.90

* Naylor et al. 2000, excluding filter feeding carps and molluscs

Wild fish used in feed for fish and shellfish in 2007

Overall	25707				16189		0.63	
milkfish	608	3%	1%	0.82	67	100	0.11	0.16
tilapia	2575	5%	0%	1.39	800	0	0.31	0.00
f/w crustaceans	1119	14%	2%	0.99	689	340	0.62	0.30
misc f/w carnivores	855	40%	5%	0.34	516	300	0.60	0.35
eel	279	50%	5%	1.43	884	400	3.17	1.43
catfish	2080	8%	2%	1.08	800	760	0.38	0.37
chinese carps	10736	5%	0%	0.80	1906	0	0.18	0.00
trout	683	24%	12%	1.25	911	2040	1.33	2.99
salmon	1538	24%	16%	1.25	2053	6160	1.33	4.01
marine fish	1690	30%	7%	1.37	3080	3240	1.82	1.92
shrimp	3544	18%	2%	1.58	4484	2240	1.27	0.63
Species/group	(kilotonnes)	(%)	(%)	FCR	used (m.)	used (o.)	ratio (m.)	ratio (o.)
	compound diets	fishmeal	fish oil		wild fish	wild fish	fish out	fish out
	Production with						fish in:	fish in:

Tacon and Metian (2008)

Aquaculture escapes the 'fishmeal trap'!

Fish in: Fish out ratios for major, fed aquaculture species (data from Tacon and Metian, 2008)

Development of integrated farming systems Can salmon and shrimp farming be classed as integrated aquaculture ?

- Integrated Multi-Trophic Aquaculture (IMTA)
 - " is a practice in which the by-products (wastes) from one species are recycled to become inputs (fertilizers, food) for another."

(definition from Wikipedia)

Norwegian salmon: FCRs

Asche and Tveterås (2005)

AQUACULTURE R L L I R T C E

Aquaculture's ability to respond to disease shocks

- Salmon
 - Better site selection
 - Vaccines
- Shrimp
 - Low and zero water exchange systems
 - Selective breeding of disease-free and disease resistant stocks
- Oysters
 - Introduction of new species

Norwegian salmon: antibiotics

Asche and Tveterås (2005)

Aquaculture responds more quickly than fisheries

Aquaculture

- Property rights for sites and stocks are clearly assigned
- incentives to address many externalities (like disease and pollution)

Problems with fisheries

- Open-access (tragedy of the commons) overfishing
- Government subsidies

Aquaculture:

the best adaptation strategy of fisheries to climate change

Thank You.

