Dealing with Uncertainty: implications for fisheries adaptation

R. Ian Perry

Fisheries & Oceans Canada, Pacific Biological Station, Nanaimo, B.C., Canada

Ian.Perry@dfo-mpo.gc.ca

Coupled marine social-ecological systems

Social-ecological systems:

- complex adaptive systems including social (human) and ecological (biophysical) sub-systems in twoway feedback relationships
- integrated concept of humans-innature
- delineation between human social and ecological systems is artificial

Berkes. In Press. In: Ommer et al. World Fisheries: a social-ecological analysis. Wiley-Blackwell.

Perry et al. 2010. In: Barange et al. Marine ecosystems and global change. OUP

sheries and Oceans

Types of Uncertainty

- 1. Observation uncertainty (current state of the system is not completely known)
 - due to natural variability on a variety of time and space scales
 - difficulties in making accurate observations
- 2. Model uncertainty (models are not perfect)
 - due to wrong or incomplete systems and processes included in the models (or missing entirely)
 - lack of knowledge of parameter values
- 3. Process uncertainty (lack of understanding of the system)
 - lack of knowledge of how system is structured and functions
 - interacting effects of multiple drivers of change
 - uncertainty over human behavioural responses
- 4. Policy uncertainty (inadequate application)
 - Information not communicated clearly or policies not appropriate

Expected impacts of climate change on marine ecosystems

1. Changes in species' distributions

- model globally on the basis of "habitat envelopes"
- one model predicts range shifts of 600 km for pelagic species and 220 km for demersal species, with 83% moving poleward (Cheung et al. Fish and Fisheries, 2009)

2. Changes in species' abundances

 due to changes in recruitment, conditions exceeding physiological limits, etc.

3. Changes in productivity of marine ecosystems

- expectation is for marine ecosystem productivity to decrease in low latitudes and increase in high latitudes
- response of upwelling areas is unclear

(e.g. Barange and Perry. 2009. FAO Tech. Rept. 530)

Several factors complicate predictions of climate change impacts

- local expressions of global-scale predictions
 - e.g. details of changes in fish distributions; threshold effects
- disruption of existing communities as species respond at different rates to warming conditions
- changes of seasonality mismatch of life cycle timing
- uncertainties about how nutrient inputs and productivity will respond to warmer conditions
- declines in adaptive capacities of marine ecosystems to climate change due to effects of fishing and habitat loss, e.g. shorter life spans, loss of sub-populations

Result is: increased Model and Process uncertainty

Drivers of change in marine social-ecological systems

Biophysical drivers:

- environmental variability
- climate trends (change)
- acidification
- changes in oxygen concentration
- internal ecosystem dynamics (predator-prey; disease)

Human drivers:

- fishing
- habitat degradation
- contaminants
- introductions of exotic species
- mineral extraction
- demographic changes
- economic changes
- market / trade changes
- infectious diseases
- societal and international agreements
- law and property relations
- policy changes

Human social systems cope with variability (uncertainty) within their "normal" range of experience, and adapt to variability beyond their "normal" range.

"Normal" range is therefore a scale issue, i.e. relative to the experience and adaptive capacities of the natural or human social systems

Peches et Océans

Synthesis of responses of fishing-dependent human communities to global changes expressed locally

- at short time scales and in response to "small" changes
 (coping strategies relatively quick to start, somewhat reversible):
 - intensify effort
 - diversify to other gears and species
 - migrate
 - "hibernate"
- at longer time scales, or in response to "big" changes
 (adapting strategies slower to implement, difficult to reverse):
 - political reform
 - capacity building
 - restructuring
 - community closure

Queensland east coast inshore finfish fishery

(Courtesy Renae Tobin and Steven Sutton, James Cook University, Cairns, Australia)

Commercial fishery

- about 200 active vessels
- average experience 28 years
- target multiple species
- 7% of vessels depend on inshore

Charter fishery

- about 230 vessels
- average experience 8 years
- target mostly (75%) Barramundi
- 70% of vessels depend on inshore

Queensland east coast inshore finfish fishery

(Courtesy Renae Tobin and Steven Sutton, James Cook University, Cairns, Australia)

Explore potential adaptive capacities of these fisheries to a hypothetical scenario of warmer waters, barramundi move south and species composition changes in northern Queensland:

Commercial fishery

- · can move
- can change species
- low investment and debt good potential for restructuring

= good social-ecological resilience

Charter fishery

- some can move
- most cannot change species
- high investment, difficult to restructure
- young, high education, previous experience elsewhere, low household dependence on fishing = good social, but not ecological, resilience

Peru – adaptations to interannual (ENSO) and multi-decadal variability

(Courtesy Milena Arias Schreiber, M. Niquen, M. Bouchon, IMARPE, Peru)

Peches et Océans

1. Decentralised processing plants

but significant potential social consequences

Peru – adaptations to interannual (ENSO) and multi-decadal variability

(Courtesy Milena Arias Schreiber, M. Ñiquen, M. Bouchon, IMARPE, Peru)

- 1. Decentralised processing plants
 - but significant potential social consequences
- 2. Low cost unloading facilities
- 3. An opportunistic industry
 - industry is able to substitute other species for fishmeal processing

- lack of a management plan for the anchovy fishery avoids legal instruments that could restrict or delay rapid management decisions
- 5. Rapid response from management institutions
 - it takes two and a half days to close the anchovy fishery following written recommendations from the Peruvian Research Institute

Enhancing adaptive capacities of marine socialecological systems to variability and uncertainty - good step towards adapting to climate change

Biophysical systems	Human social systems	
Reduce overall fishing pressure	Adopt a livelihoods approach	
Shift exploitation to functional groups (& new fishing opportunities)	Current policies may not be appropriate under climate change, e.g. management targets; subsidies	
Do not focus on biomass alone: maintain life spans; sub-populations	Increased uncertainties require more monitoring	
Do not decrease trophic level of fish communities	Governance: active communication and involvement with stakeholders	
Adapt fishing and stock rebuilding to current productivity conditions	New agreements may be needed for problems (e.g. migratory stocks)	

Analogy with explicit inclusion of uncertainties into weather forecasting

Old Paradigm	VS.	New Uncertainty Paradigm	
Focus only on reducing uncertainty		-	Focus on reducing & quantifying uncertainty
Single value "most likely" forecast	T.	-	Most likely value and probabilities of other values
Decisions based only on "most likely" scenario		-	Decisions based by weighing costs and impacts of each possible scenario
Status quo socio- economic losses due to forecast error		-	Risk mitigation, socio-economic enhancements due to factoring forecast error in decision making

NOAA, 2009. State of the Science Fact Sheet. Weather Forecast Uncertainty.

sheries and Oceans

Recommendations for dealing with uncertainty

1 Observation uncertainty

- invest in monitoring (of critical components of the social-ecological system)
- statistical modelling of near-future conditions rather than long-term projections

2. Model uncertainty

 develop multiple models, and which are robust to model uncertainties (i.e. use a model ensemble approach)

3. Process uncertainty

- invest in research to
 - improve understanding of critical processes,
 - identify highly sensitive components, and
 - identify important processes not included in models

4. Policy uncertainty

eries and Oceans

- prior planning with stakeholders
- monitoring implementation, and periodic review of policies

Dealing with uncertainty: implications for fisheries adaptation

- Climate change is but one of many drivers of change in marine social-ecological systems
- Fisheries systems have capacities to adapt to uncertainties due to environmental and human variability
 - these can be enhanced or suppressed by management and policy actions
- Recognise the inherent uncertainties of observations, models, underlying processes, and the application of policies
 - requires risk-based decision making
- No matter how good the predictions, there will always be uncertainties and, consequently, `surprises`
 - need to build capacities in both the `natural` and human social systems which support adaptation to surprises

Acknowledgements

Large parts of this presentation are derived from the Global Ocean Ecosystem Dynamics (GLOBEC) program

a core program of IGBP, SCOR, and IOC

Wish to thank specifically:

Rosemary Ommer; Manuel Barange; Cisco Werner

