Managing Incidental and Agricultural runoffs in Coastal Areas

Robert J. Díaz Virginia Institute of Marine Science, College of William and Mary, VA <u>diaz@vims.edu</u>

Nancy N. Rabalais Louisiana Universities Marine Consortium, Chauvin, LA nrabalais@lumcon.edu

Denise L. Breitburg Smithsonian Environmental Research Center, Edgewater, MD breitburgd@si.edu

Seriousness of low Dissolved Oxygen is best expressed by motto of American Lung Association:

"When You Can't Breathe,

Nothing Else Matters."

How Eutrophication/Hypoxia Became a Global Problem • The increasing input of nutrients to coastal areas over the last 60 years resulted in system overload. • Strong correlation through time between: Population growth. Increased nutrient discharges. World Population

- Increased primary production.
- Increased occurrence of hypoxia/anoxia.

Ecosystem Services:

- Provisioning (Food, Fiber)
- Regulating (Water Purification, Trophic Structure)
- Supporting (Biodiversity, Nutrient Cycling)
- Cultural (Aesthetic, Recreation)

Ecosystem Services Needed by Aquaculture:

- Regulating Services:
 - Water purification and waste treatment
 - Biological control, trophic structure
- Supporting Services:
 - Nutrient cycling
 - Habitat

Eutrophication Effects on Ecosystem Services:

- Regulating Services:
 - Water purification and waste treatment (Loss)
 - Biological control, trophic structure (Loss, Altered)
- Supporting Services:
 - Nutrient cycling (Loss, Altered)
 - Habitat (Loss)

Global Loss of Ecosystem Services from Eutrophication Hypoxia

	Habitat	Value Lost to Hypoxia (Million USD)	Hypoxic Area (Km2)	% Habitat Hypoxic	Global Flow Lost to Hypoxia
	Shelf	26 000	170 000	0.6%	0.1%
	Estuaries	151 000	70 000	3.9%	0.4%
	Total value of all ecosystem services in 1994:				
33 000 000 000 000 UDS					
Costanza et al. 1997, Diaz and Rosenberg 2008					

Managing Agricultural Impacts on Aquaculture

- Developing sustainability in agriculture through ecosystem-based management approach that considers land-sea interactions.
- Multiculture of species that can lessen impacts of land based activities
 - Offsetting declines ecosystem services (water quality)
 - Increasing ecosystem services (nutrient cycling)

