

Dealing with escapement issues

Dr. Arne Fredheim. Dr. Østen Jensen and Dr. Dempster
CREATE – centre for aquaculture technology
SINTEF Fisheries and aquaculture
Trondheim, Norway

Content

Escapes of fish from aquaculture: causes, consequences and methods to prevent escape

- Introduction and consequences
- Extent and causes of escapes
- Mitigating and preventing escapes
- Summary and recommendations

Introduction and consequences Why prevent fish escape

- Ecological "pollution" threat to wild fish
 - Interbreeding between selected stock fish and wild stock
 - Introduction of new species
 - Competition for food and space
 - Transfer of pathogens and parasites
- Economy
 - Loss of stock and income
 - Cost related handle the escape incident
 - Public perception
- Responsibility towards the nature ensure diversity of species

Introduction and consequences Escape of farm salmon Norway

Hindar, K., Fleming, I. A., McGinnity, P., and Diserud, O. 2006. Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. – ICES Journal of Marine Science, Vol. 63

Introduction and consequences The number challenges

- Increasingly larger farms
 - Circumference 60 → 160m
 - More than 500 000 fish in one single cage
 - 10-12 cages at one site
 - More than 10 000 tons at one location
- 300 million salmon standing in Norwegian cages
- One tenth of a percentage is several hundred thousand fish
- 500 000 1 000 000 wild salmon return each year to spawn

Introduction and consequences The simple complex construction

• More complex to analyze than rigid ships and offshore construction

- More fragile strength, wear and tear
- Less than 5% of the total costs

Introduction and consequences

Types of escapes

- Escape of fertilized eggs for pelagic spawners
- Escape of farmed fish from juveniles to slaughter sized fish
- Escape from sea based farms
- Escape from land based farms
- Escape during transportation

Causes and extent of escape

Number of escapees in Norway 2001 - 2009

Causes and extent of escape

Causes of escapes Norway 2006 - 2009

- 20% large escapes incidents (> 5000 fish)
 94% of total number of fish
- 44% of small escape incidents (< 200 fish)
 0.27% of total number of fish
- Hole in the net cage is how the fish escape

Source: Norwegian Directorate of Fisheries

Causes of escape - Example

Progressive break down

- Complex mooring
 - many components
- Dependent on one single component
- One mooring slips/break

- Connector plate fail
- Progressive break down and complete system failure
- Solution:
 - Test of anchor
 - Increased dimensions
 - Understanding mechanisms
 - Design against progressive break down

Causes of escape - Example Abrasion between net and chain

- Hole in nets most common reason for escapes
- Several cases in Norway last years
- Abrasion between nets due weights system and weight ring
 - Larger units
 - Change in operations
- Understanding of mechanisms and operations

Design of net cage

Causes of escape - Example Fish biting

- Cod (and other fish) bite and nibble on netting and create holes
- Difference in exploratory behavior – difference in changes to find and swim through holes
- More frequent inspections
- New net cage material
- Understanding of fish behavior to design proper net cage

Mitigating and preventing escapes How to reduce the impacts of fish escape?

- Use of local brood stock
 - Unlikely in the long-term
- Recapture of escapees
 - Coordinated recapture fishery or conditioned fish
 - In salmon recaptures are however low just a few percent
- Parasite and disease control in farming
 - Coordinated treatment or vaccination
 - Ensure escapees do not have pathogens to transfer
- Strengthen wild stocks
- Sterile mono sex species
- First line of defense and main solution to reduce escape it self only sustainable long term solution for industry and environment

Mitigating and preventing escapes Recommendations

- Mandatory reporting
- Mechanisms to collect, analyze and learn from reported incidents
- Technical assessments of selected incidents
- Technical standards for equipment and operations
- Mechanism to enforce standards
- Training and education

Mitigating and preventing escapes Official technical requirements in Norway

- Official regulations describing the system NYTEK
- NYTEK point to NS 9415 "Marine fish farms Requirements for design, dimensioning, production and operation"
- Applies to:
 - Floater, net cage, mooring system and feed barge
- Classification of all aquaculture locations/sites
 - Wind, current and waves
- Product certification of all new equipment
 - Approved according to requirements in NS 9415
 - Control of production
 - Mooring analysis
- Use and installation manuals

Mitigating and preventing escapes How the system works

- Accreditation company/body (Norwegian Accreditation)
 - Control and issues accreditation
- Accredited Certification Company (Private)
 - Certify equipment and producers according to NYTEK and NS 9415
- Farmers need to use equipment that are certified
 - Classification of site by a competent body
 - Equipment certified suitable for site
- Mooring analysis and mooring equipment from a certified company
- Farmer responsible for installation and control
- Norwegian Accreditation can withdraw accreditation
- Equipment can be pulled back or withdrawn from market
- Norwegian Directorate of Fisheries can withdraw license

Summary

- Need to prevent fish from escaping
 - Avoid ecological "pollution"
- Challenge
 - Construction
 - Number issue
- Reporting and learn from experience
- Develop operations and technical standards
 - ISO work group on Aquaculture standards
 - EU project Prevent Escape
- Enforce standards
- System design
- Education and training

Thank you for yor attention

