Should we replace our power station?

Secondary: (ages 11 – 14)

Science

Students discuss the merits of pumped storage for producing electricity to meet sudden high levels of demand in the national grid and discuss other sources of energy and their consequences. The unit of work is built on two steps for students: reading an article illustrated with pictures of the Dinorwig site in North Wales (this can be adapted to the national context) and in-group investigations of methods of generating electricity.

Time allocation	3 lesson periods Investigate characteristics of different sources of energy Learn how natural forces can be transformed into sources of energy Devise and apply numerical reasoning in a problem-solving strategy			
Subject content				
Creativity and critical thinking	 This unit has a critical thinking focus: Consider several perspectives on the generation of energy Explain strengths and limitations of different ways to generate energy Reflect on chosen source of energy relative to alternatives 			
Other skills	Collaboration, Communication			
Key words	power; energy; electricity; generating; alternatives; national grid; storage; distribution			

Products and processes to assess

This activity involves products and processes in which students make visible the complexity of a problem, appropriately challenge and justify assumptions, and collectively produce a video-based synthesis of their work. At the highest level of achievement, student work shows a scientific understanding of the processes of energy transformation and puts forward arguments that reflect active analysis, critique, and inquiry concerning the subject matter and novel contributions to the task at hand. In the role-playing exercise, students fully embrace the assigned position whilst appreciating the positions of others.

Teaching and Learning plan

This plan suggests potential steps for implementing the activity. Teachers can introduce as many modifications as they see fit to adapt the activity to their teaching context.

Step	Duration	Teacher and student roles	Subject content	Creativity and critical thinking	
1	Lesson period 1	The teacher introduces the topic by presenting the article (from Dinorwig site) and/or scientific photos of power stations (see for example the gallery from industcards.com). The teacher may also facilitate a preliminary discussion about how energy is produced and used in students' homes and environment.	Learning about how energy is produced and stored, and about how it can travel from one place to another	Generating ideas to solve a scientific problem Making connections between	
		Students, in groups, find different ways of transforming natural forces into energy for human activities (e.g. water, sun, nuclear, coal, wind). The teacher can provide reference material to support this or ask students to do internet research as appropriate to the teaching context. The teacher may also introduce the idea of efficiency, how it is calculated, and how it is only one of a number of criteria that can be assessed when deciding how energy is produced Calculated Efficiency Calculating efficiency	Identifying and exploring different methods of energy production	natural forces and energy Questioning assumptions about the efficiency of different energy sources	
		As a homework assignment, students choose one example of energy production and prepare a simple scheme or diagram to explain it to the rest of the class.			
2	Lesson period 2	Students present their diagrams to the class. They consider all the methods presented and make proposals to replace the local facility with another source of energy.	Articulating the process used in different methods of energy production	Formulating and evidencing arguments about energy production from different points of	
		In a class discussion, students present arguments based on various criteria (capital costs, operating costs, environmental costs, aesthetic considerations) to assess whether these	Considering scientific and other	view	
		proposals can be considered or not. Students may have to engage in internet research to help inform their use of these criteria.	data and information to inform a decision	Considering several perspectives to suggest solutions to the problem of energy production in the local area	
		The teacher moderates the discussion and introduces new perspectives and considerations (e.g. power generation, storage, distribution).			
3	Lesson period 3	Students, in groups, play roles in favour or against one solution. Each group chooses a role (e.g. economist, environmentalist, journalist, tourist guide) to consider the feasibility and opportunities for the selected method. Students should use at least 3 or 4 calculations to justify their arguments and again should do internet research to find the information needed.	Finding relevant evidence from the perspective of a particular stake- holder (e.g. vocabulary, concerns)	Appraising strengths and limitations of a solution Reflecting on chosen approach or	
			Making a video with good content	solution relative to possible alternatives	
		Each group makes and shows a 60-second video presentation expressing its position according to the chosen role and in a closing discussion reflect on what they have learned			

Web and print						
\checkmark	Suppor	rt material for teachers on this pedagogical activity:				
	<u> http://</u>	/learning.gov.wales/docs/learningwales/publications/141216-power-station-or-not-				
	<u>en.zip</u>					
\succ	The Di	he Dinorwig power station website: <u>https://www.fhc.co.uk/</u>				
\triangleright	Gallery	allery of power plants around the world: <u>http://www.industcards.com/</u>				
\triangleright	An arti	An article of the world nuclear association: <u>http://www.world-nuclear.org/info/Energy-and-</u>				
	Enviro	onment/Environment-and-Health-in-Electricity-Generation/				
\checkmark	Engine	ngineering and technology history: http://ethw.org/Category:Energy				
Other						
A	Docum	Document evidence of student work at each stage. Consider asking students to use				
	record	rding sheets for noting discussions and final decisions				
\succ	Project	or or interactive whiteboard for visual display of examples of power stations				
\succ	Camer	neras (either students' own devices or supplied by school)				
\blacktriangleright	Compu	uters and Internet connections for investigations on power stations				
Opport	unities to	o adapt, extend, and enrich				
\succ	Furthe	r links can be made with physics (by asking students to investigate and identify types				
	of ener	rgy or by engaging in lessons around the conservation of energy, and working with the				
	concep	ots of power and energy conversion efficiency				
\blacktriangleright	Links c	nks can be made with earth and environment topics by engaging in activities where				
	studen	ts explore relationship of land management to human use				
\triangleright		are also potential links with history (history of science and technology) and				
	mathe	matics (arithmetic skills)				

Creativity and critical thinking rubric for science • Mapping of the different steps of the lesson plan against the OECD rubric to identify the creative and/or critical thinking skills the different parts of the lesson aim to develop

	CREATIVITY Coming up with new ideas and solutions	Steps	CRITICAL THINKING Questioning and evaluating ideas and solutions	Steps
INQUIRING	Make connections to other scientific concepts or conceptual ideas in other disciplines	1-2	Identify and question assumptions and generally accepted ideas of a scientific explanation or approach to a problem	1-3
IMAGINING	Generate and play with unusual and radical ideas when approaching or solving a scientific problem	2	Consider several perspectives on a scientific problem	2
DOING	Pose and propose how to solve a scientific problem in a personally novel way	2-3	Explain both strengths and limitations of a scientific solution based on logical and possibly other criteria (practical, ethical, etc.)	2-3
REFLECTING	Reflect on steps taken to pose and solve a scientific problem		Reflect on the chosen scientific approach or solution relative to possible alternatives	3