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1.  The Dilemma of Learning Needs vs. Grade-Level Expectations 

Nearly all countries provide guidance to schools on what mathematics to teach at each 

grade. In most countries, such documentation is referred to as the “curriculum.”1 

The specification of “grade level expectations” (GLEs) in curriculum [standards] has been 

important, accomplishing three major goals: (1) identifying priorities in content to be 

taught, (2) describing a rate of learning which, if followed, will prepare students for a 

variety of college and career goals by the end of secondary school, and (3) ensuring that 

the introduction of topics across the different content strands of mathematics (typically 

number, measurement, algebra, statistics and probability, and geometry) are adequately 

coordinated. 

As they target specific curricular topics for their grade levels, teachers face significant 

diversity in their students’ student preparation in each class. Student preparation can range 

across multiple grade levels, below and above their GLEs. Because effective teaching must 

be proximal to the learner’s current state of understanding according to all learning 

theories, there is implicit tension between complying with grade level expectations and 

meeting the needs of students with a range of preparation. The discrepancy between what 

one’s students know and what is slated to be taught causes many teachers to experience a 

dilemma that has severe implications for student learning and the overall goals of the 

Education 2030 project: the dilemma of addressing students’ learning needs 

vs. maintaining the grade-level expectations.  

Students and teachers experience this in educational systems around the world. Graven 

(2016) describes in fairly stark terms an example of this dilemma from South Africa. 

Many students in upper elementary and middle school still rely on their fingers to solve 

many computation problems and lack opportunities to learn effective strategies for 

transitioning to more abstract thinking. Upper elementary teachers confront this genuine, 

serious lag in student understanding and strategies, and are simultaneously instructed by 

school inspectors to teach on grade level. As one fourth grade teacher from the Eastern 

Cape wrote,  

We tell the subject advisor that I am actually at grade 2. CAPS [Curriculum and 

Assessment Policy Standards] says I must teach this [grade 4]. But my learners are 

not yet on that level. That means I have to go to grade 3 work. They [district subject 

advisors] said no; it is wrong. They know that some learners struggle or whatever, 

but we are wrong to go back to grade 2 or grade 3. We always argue about that, 

and then they will say, “it is from the top," and not them, and then what do you 

do?” 

After sharing this story from her research, Graven commented:  

Zandi’s...comments illustrate the way in which Department of Basic Education 

systems tend to focus on monitoring teacher compliance and curriculum coverage, 

rather than supporting teachers to enable high quality learning in their classrooms. 

Ironically rather than enabling teaching and learning, these systemic interventions 

seem to get in the way of the very quality that they are intended to produce. 

(Graven, 2016 p. 9-10)  

                                                      
1 In the United States, such documentation is referred to as the “curriculum standards.” 
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This report (Graven, 2016) aptly captured the irony and pathos in the situation: aspirations 

colliding with realities. There is an urgent need to find a way to resolve this dilemma. 

1.1. Addressing the Dilemma as an Open Design Challenge 

Viewed in the context of the Education 2030 position paper (OECD, 2018), this collision 

embodies the need to redefine the learning expectations for all students via forward-leaning 

and transformational curriculum [standards], while improving the pathways for student 

populations to achieve those goals, despite vast variation in their educational preparation, 

resources, and opportunities to learn. I frame the dilemma of addressing learning needs 

vs. grade-level expectations as the following open design challenge: 

Can we design adaptive systems that deliver curriculum and instruction that meet the needs 

of all the students, while at the same time ensuring progress at appropriate rates towards 

readiness for college and careers as conceptualised in the OECD Education 2030 vision 

and the draft Mathematics Competency Framework? 

To meet this challenge requires creation of a dynamic system in which learning targets, 

associated learning paths, and related classroom assessment measures are all subject to 

continuous improvement and ongoing validation, in order to actively guide pedagogy and 

curriculum implementation. A fundamental underpinning of this dynamic system is the 

establishment of a shared and accessible knowledge base that can guide the development 

of such adaptive systems.  

I propose that the emerging learning trajectories/learning progressions genre of research 

can contribute, first of all, to that shared knowledge base through empirical evidence on 

patterns of student thinking. These can in turn inform curriculum materials and instruction, 

tighten the feedback between teachers and students, improve inclusiveness, and accelerate 

student learning in order to close the gaps between curricular standards and current states 

of learning.  

To achieve this goal, it is necessary to collect current research on learning 

trajectories/progressions, to synthesise the rich, dispersed research on learning into 

hypothesised learning trajectories formats for neglected content areas, and test and validate 

these learning trajectories/progressions in the context of practice. Such efforts would 

concurrently support design and implementation of a systemic approach to the concept of 

learning “progress” that both connects curricular targets to underlying LTs and provides 

immediate classroom access to student learning data from diagnostic assessments. 

The paper is organised around seven questions: 

 What is a learning trajectory/learning progression in mathematics education? 

(Section 2) 

 Around what topics has the research been concentrated? (Section 3) 

 What is known about the use and outcomes of LT/LPs in curriculum, instruction, 

and formative assessment? (Section 4) 

 How are LT/LPs measured? (Section 5) 

 What evidence is there from taking LT/LPs to scale? (Section 6) 

 What is known about LT/LPs’ impact on educational policy? (Section 7) 

 What are the possible future roles of LT/LPs in the OECD’s 2030 Vision and 

Competency Framework? (Section 8) 
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2.  What is a Learning Trajectory/Progression (LT/LP) in Mathematics 

Education? 

The concept of a learning trajectory has a long history in developmental psychology, 

beginning with the acknowledgement that children are not miniature, incomplete adults; 

instead, they continuously build their understanding of the world through their experiences 

and interactions with others, and their views of ideas evolve from naive to more 

sophisticated. This recognition led many scholars to an insatiable curiosity to understand 

how children in particular--and in fact to a degree, any naive learners--view phenomena 

and ideas. Piaget and his colleagues produced an entire program of research to document 

the ideas of children and showed the remarkable ingenuity of children in building up their 

understandings, which may differ markedly from an adult’s more sophisticated viewpoint. 

Understanding this, and knowing how to bring it forth in instruction, is of critical 

importance for teachers, especially those who take seriously the view that “one must start 

where the student is."  

Working from a constructivist perspective, Simon (1995) addressed the specific question 

of how a teacher might envision a means to help students get from their early notions to 

more sophisticated thinking about a target concept. In doing so, he proposed “hypothetical 

learning trajectories" (HLT) which included “the learning goal, the learning activities, and 

the thinking and learning in which students might engage” (p.133). From this basis, the 

field launched a significant research effort to synthesize research on students’ learning over 

time into learning trajectories as models of the evolution of learners’ thinking along their 

gradual approach to targeted key ideas.  

One definition of a learning trajectory, useful as a starting point, is “descriptions of 

successfully more sophisticated ways of reasoning within a content domain based on 

research syntheses and conceptual analyses” (Smith, Wiser, Anderson, & 

Krajcik, 2006, p. 1).  

A more elaborated definition is  

...a description of qualitative change in a student’s level of sophistication for a key 

concept, process, strategy, practice, or habit of mind. Change in student standing 

on such a progression may be due to a variety of factors, including maturation and 

instruction. Each progression is presumed to be modal—i.e., to hold for most, but 

not all, students. Finally, it is provisional, subject to empirical verification and 

theoretical challenge… (Deane, Sabatini & O’Reilly, 2012, para. 1, cited in Graf 

& van Rijn, 2016, p. 166)  

The second definition recognises the importance not only of the delineation of levels, but 

also of the reasons for changes in levels and of recognising that individual students’ paths 

may differ. 
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2.1. A Distinction in Language 

Frequently, researchers and practitioners use the terms learning trajectories and learning 

progressions interchangeably. In mathematics education, most people use the term 

“learning trajectories” as derived from Simon (1995). In contrast, the term “learning 

progressions” dominates in science education (NRC, 2007; Corcoran et al., 2009; NGSS 

Lead States, 2013; Alonzo et al., 2012, Furtak & Heredia, 2014). The two terms share many 

characteristics (attending to student thinking, targeting big ideas, articulating a sequence of 

tasks). Typically when used by science educators, the term progression outlines 

longer-term curricular landmarks within curricular sequences, over years (or “long-term 

development of core ideas in scientific disciplines," Lehrer, 2013, p. 173), whereas in 

mathematics education, the term trajectory tends to refer to finer cognitive distinctions. 

Battista’s (2011) distinction, that “trajectories include descriptions of instruction, 

progressions do not” may likewise point to a difference between a larger-grain-size 

curricular framework established by progressions and more detailed cognitive processes 

that drive instruction in trajectories, also articulated by others (Ellis, Weber, 

& Lockwood, 2014).  

However, the distinction between usage of the terms in mathematics and science has not 

been hard and fast, as evidenced by the fact that the American writers of the Common Core 

State Standards for Mathematics chose to use the term progressions as they drew on the 

literature on student thinking (Common Core State Standards Initiative, 2010; Daro, 

Mosher, & Corcoran, 2011; Confrey & Maloney, 2014; McCalllum, 2011). In another 

variation, Clements and Sarama (2004) chose to describe a learning trajectory as a 

combination of a developmental progression and an instructional sequence. Of the 

developmental progression, they wrote,  

That is, researchers build a cognitive model of students’ learning that is sufficiently 

explicit to describe the processes involved in the construction of goal mathematics 

across several qualitatively distinct structural levels of increasing sophistication, 

complexity, abstractions, power and generality. This constructivist aspect 

distinguishes the learning trajectory approach from previous instructional design 

models that, for example, used reductionist techniques to break a goal competence 

into subskills, based on an adult’s perspective. (p. 84) 

For them, the instructional sequence is “composed of key tasks designed to promote 

learning at a particular conceptual level or benchmark in the development progression.” 

(p.84)  

It is difficult, and, arguably unwise, to recommend the use of one term or the other given 

the varied reasons cited by different scholars. For this reason, in this paper, I have chosen 

to use learning trajectory/learning progression with the abbreviation LT/LP. 
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2.2. Connections to Theory and Method 

The development of learning trajectories was positioned within constructivist, 

socio-constructivist, and/or socio-cultural views of learning. The details of those theories 

exert a profound influence on the meaning of learning trajectories, because they 

circumscribe what is likely to be the substance of the levels and the explanations of the 

movement between levels (Simon & Tzur, 2004; Simon, Saldanha, McClintock, et al., 

2010). Learning trajectories are also tied to socio-cultural theories as culture tools that draw 

on the experience and background of children and that require further adaptation in contexts 

(Lehrer & Schauble, 2015; Penuel & Shepard, 2016; Shepard, Penuel, & Pellegrino, 

2018b).  

For example, major contributions to LT/LPs derive from the scholarly tradition of Realistic 

Mathematics Education (RME), founded by Freudenthal (Treffers, 1987; De Lange, 1987; 

Streefland, 1991; Gravemeijer, 1994; van den Heuvel-Panhuizen, 1996). Starting from 

Freudenthal’s fundamental assertion that “mathematical structures are not a fixed datum, 

but that they emerge from reality and expand continuously in individual and collective 

learning processes” (cited by van den Heuvel-Panhuizen, 2003, p. 10, from Freudenthal, 

1987), the RME community has leveraged a key process of “re-invention” by providing 

scenarios that open the possibility of inventing a mathematical idea and then moving to 

higher levels through “progressive mathematisation.” A critical element of that theory is 

the “level principle,” which recognises that early levels of understanding are often 

contextually connected and that the activity of “mathematizing on a lower level could 

become the subject of student inquiry on a higher level” (cited by van den 

Heuvel-Panhuizen, p. 13, from Freudenthal, 1987). This process of “levelling up” is a 

critical element of LT/LPs. Further, as in Realistic Mathematics, children should also be 

able to revert to a lower level. This process of moving up and down levels involves the 

movement by children from “models of” to “models for” (Streefland, 1991, and as cited by 

van den Heuvel-Panhuizen, 2003). Such detailed explanations, and others, by investigators 

such as Brousseau (2002), Bauersfeld (2012), and Vygotsky (1986), of how children learn 

increasingly abstract and generalised knowledge, are essential to the understanding and 

proper use of LT/LPs, as they are the propellants that connect the levels and, without which, 

there would be no movement.  

The development of LT/LPs is typically realised through the conduct of design studies 

(Brown, 1992; Prediger, Gravemeijer, & Confrey, 2015) or teaching experiments (Steffe 

& Thompson, 2000; Confrey & Lachance, 2000) with their extended interactions in 

classroom settings, as opposed to laboratories, and with conditions designed to stimulate 

the invention and articulation of student ideas, permitting researchers to pursue possibilities 

for further insight into student thinking. Cobb, Confrey, diSessa, Lehrer and Schauble 

(2003) specified five conditions associated with design study: 1) examine explicitly a set 

of theoretical issues, 2) be interventionist, 3) place those theories in harm’s way as a means 

of supporting a particular kind of learning, 4) be iterative, and 5) hold decisions accountable 

to design.  

The resulting LT/LPs may be packaged as a set of descriptions of levels and associated 

tasks and/or curricular materials, but Lehrer and Schauble (2015), echoing a theme of 

RME, emphasised that LT/LPs are not context-free accounts of learning. Grounded in 

classroom studies, LTs refer more broadly to “the educational experiences that support the 

developing learner, and these educational experiences are delineated in the LP model both 

as principles that guide educational design and as mechanisms that account for learning” 

(p. 433). The descriptions of the tasks, as woven together to form an educational 
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experience, are consistent with the work of Gravemeijer who refers to these 

domain-specific, extended, and carefully designed teaching episodes as yielding “local 

instructional theories.” Gravemeijer, Bowers, and Stephan (2003), for example, described 

these local instructional theories as follows: 

Two implications of this assumption are that we do not assume that any given 

sequence will play out the same in any classroom, and we do not view a proposed 

trajectory as a series of conceptual stages along which each individual student in 

the class will progress. Instead, when developing a learning trajectory, we attempt 

to outline conjectures about the collective development of the mathematical 

community by focusing on the practices that might emerge at the beginning of the 

sequence, then creating tools and activities that might support the emergence of 

other practices that would be based on increasingly sophisticated ways of acting 

and justifying mathematical explanations. (p 55) 

The LT/LPs are not simply psychological descriptions of learning but are, rather, situated 

in a larger conceptualisation of the roles of students and teachers in overall classroom 

learning ecologies. Likewise, the tasks associated with levels are not simply stimuli for 

responses, but involve setting up conditions for instructional participation and learners’ 

activity. Thus, the tasks are situative in that, while they may introduce disciplinary content 

to learners, they must also help relate those contexts to their experience and background 

(Bang & Medin, 2010; Shepard, Penuel & Pellegrino, 2018a).  

Ensuring sufficient attention to possible cultural connections of LT/LPs remains a 

challenge for many LT/LP scholars, according to Delgado and Morton (2012). 

They warned that in order to promote equity in relation to LT/LP scholarship, researchers 

need to pay more careful attention to conducting research in diverse settings, including all 

student ideas, understanding what students from diverse backgrounds bring to instruction, 

and providing sufficient supports in LT/LP investigations for learners at the lower levels. 

An overall expression of the goal of the LT/LP is to: 

provide a horizon of development, a vision that can guide instruction over the long 

term. Learning is emergent and therefore, will always be variable, but having some 

notion of what to anticipate is critical for managing complexity constructively. 

(Lehrer and Schauble, 2015, p. 435)  

This characterisation of LT/LPs is therefore that of researchers’ theory-based and 

empirically-driven models of the progression, over time, of students’ diverse and 

increasingly sophisticated thinking, grounded in and emerging from rich classroom 

ecologies. Significant amounts of time and resources are required to create these 

“design-based” learning trajectories/progressions. This raises a methodological challenge 

for the purposes of building a scalable adaptive dynamic system: whether a more 

parsimonious means of LT/LP development is feasible.  
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2.3. LT/LPs Are Not Stage Theories 

Psychologists also address issues of sequence in learning, the best known of which is the 

Piagetian stage theories. A stage theory, strictly hierarchical, requires that children master 

one level before proceeding to the next. However, most LT theorists (Lehrer & Schauble, 

2015; Maloney, Confrey & Nguyen, 2014; Battista, 2011) reject a strict stage theory as a 

model for LT/LPs. LT/LP theorists recognise that the levels are not rigidly sequenced 

(NRC, 2007, p. 221), and that students advance and fall back, making steady progress when 

viewed over time (Middleton, Flores, Carlson, Baek, & Atkinson, 2003; Stephens et al., 

2017). These theorists regard the ordered sequence of levels as “expected probabilities” 

(Confrey, Maloney, & Nguyen, 2014, p. xvii) and “benchmarks of complex growth that 

represent distinct ways of thinking” (Clements and Sarama, 2014, p. 14).  

LT/LPs can be likened to ladders, with students ascending a rung at a time, but this image 

can inadvertently reinforce the stage theory model. Battista (2011) refers to the levels as a 

variety of plateaus of different heights. To capture the flexibility in students’ paths, Confrey 

& Toutkoushian (in press) use the metaphor of a climbing wall, which represents a 

conceptual space that presents both handholds and obstacles, and supports multiple starting 

points and routes. 

2.4. Epistemological Objects in the Levels 

The levels of a LT/LP are comprised of certain kinds of “epistemological objects” that 

make sense from the learner’s point of view and help in the process of coming to know. 

The characters of these objects (and the tasks related to them) distinguish learning 

trajectories from a solely logical deconstruction of a mathematical idea. Objects at different 

levels may represent shifts in learners’ attention, reflect student inventions, signal the 

rejection, extension, or transformation of prior levels, draw connections to everyday 

experience, and may depend on the introduction of new language, needs for justification, 

or consideration of a larger range of cases. 

The levels may contain naive and partial conceptions. For example, when students collect 

data on, for instance, the arm spans of their classmates and display them on a number line, 

the students’ displays often include an ordered set of values, with repeated values displayed 

in stacks (a case-values plot). Those displays, however, typically ignore gaps in the data 

values (Lehrer, Giles, & Schauble, 2002). From the student’s point of view, the case-value 

plot accomplishes their goal of presenting and ordering all the data; from an expert’s 

standpoint, the child has not yet fully distinguished scale from data points.  

Levels include invented or limited representations utilising particular features (i.e. tables 

of data). For example, van den Heuvel-Panhuizen (2003) noted that the Mathematics in 

Context learning-teaching trajectory on percent described the evolution of the percent bar 

as beginning “with a qualitative way of working, with percentages as descriptors of 

so-many-out-of-so-many situations,” (p. 18). Tasked to represent an auditorium’s 

“fullness," the percent bar emerges from learner’s sketched rectangular depiction of full 

and empty rows. It is followed by the gradual development of an “occupation meter” that 

evolves into a fully-featured percent bar and eventually a double number line. As the 

representations matured, the mathematical concepts became increasingly sophisticated 

beginning with simple informal percents, to benchmark percents, to operationalising 1%, 

to calculating x% of, and then to percent increase and decrease. 
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Student-generated strategies for solving a task frequently populate LT/LP levels. 

For example, Outhred and Mitchelmore (2000) described how third grade students build 

an understanding of area as the product of length and width beginning with early strategies 

of haphazardly filling in the space with overlapping squares and gaps. Later this strategy is 

replaced with complete and ordered rows and columns. As learners re-conceptualise the 

task to be one of finding the total number of square units, they may only need to place the 

squares along length and width to predict the total or they may use tick marks for the same 

purpose. Strategies are indicated by their variations in efficiency as students reconstruct the 

value and utility of more complex approaches.  

Novel ideas, not in evidence in mathematical texts, emerge. Confrey (1995) reported on a 

fourth-grader’s invention of “the littlest recipe” to describe the smallest whole-number ratio 

equivalent as a term which was later renamed “base ratio.” While mathematically 

equivalent to rewriting the ratio as a fraction in simplest form, the expression of it as the 

“littlest recipe” facilitated its use in building up to equivalent ratios in tables and for 

transitioning to slope in graphs. 

The diversity of kinds of epistemological objects that comprise learning trajectories make 

it clear that levels differ qualitatively. The emergence or epistemological objects requires 

settings in which students are given challenging but reachable tasks and are encouraged to 

propose ideas, invent representations, try strategies, and express ideas. They represent 

opportunities for researchers to attend to student “voice” and, in doing so, to rethink their 

own expert “perspective,” thus creating a voice-perspective dialectic (Confrey, 1998). 

Or as Lehrer and Schauble (2015) wrote, “LPs are a way to restructure and rethink the 

content and/or the sequence of the subject matter that is taught. They often serve as 

proposals to shift our view of what it means to understand an idea...” (p. 433). Table 1 

summarises qualities of learning trajectories and distinguishes those from common 

mis-perceptions about learning trajectories. 

Table 1. Qualities of learning trajectories (left) and mis-perceptions (right) 

What Learning Trajectories Are What Learning Trajectories Are Not 

Domain-specific models General or universal principles 

Expected probabilities Stage theories 

Empirically-based models of student thinking Logico-mathematical deconstructions 

Based in students’ thinking Based in opinions of experts in mathematics  

Elicited by rich or novel tasks Derived from typical exercises 

Include strategies, reasons, explanations and cases  Sub-goals of the target 

Include exploring misconceptions A means to avoid errors 

Ordered by increasing sophistication Ordered by difficulty 

Connected to big ideas over the long term Curriculum material 

Evolving Fixed 
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2.5. LT/LPs and Mathematical Practices 

The majority of LT/LPs target a concept or big idea, but it is also important to have LT/LPs 

for mathematical processes or practices (Empson, 2011). For instance, Stephens and 

Armanto (2010) describe a learning trajectory for relational thinking in primary school. 

They defined “relational thinking” as occurring when students “consider a number sentence 

as a whole, then analyse and find the structure and important elements or relationship to 

generate productive solutions” (Molina, Castro, & Mason 2007). The study consisted of an 

analysis of the learning trajectory within the Japanese Shoseki curriculum (Hironaka & 

Sugiyama, 2006). 

2.6. Grain Size 

Researchers differ in the grain size of the levels. Those grain size differences typically 

reflect differences in the purpose for the LT/LP. Bernbaum Wilmot, Schoenfeld, Wilson, 

Champney, & Zahner (2011) built a learning progression for functions consisting of six 

levels--from 0) pre-algebraic to 1) prestructural, 2) unistructural, 3) multistructural, 4) 

relational, and 5) extended abstraction--to describe conceptual growth from 6th to 12th 

grade. In contrast, Confrey, Maloney, Nguyen, and Rupp (2014) built one on 

equipartitioning with fourteen levels, covering three primary grades. The functions 

progression was developed to ascertain a student’s progressive degree of college readiness, 

while the purpose of the equipartitioning trajectory was to assist teachers in detecting 

differences in student thinking as a means to strengthen their learning in daily instruction. 

The choice of grain size is influenced by how the LT/LP is used, for instance, for extended 

curricular development, to evaluate readiness, to diagnose student progress or readiness, or 

inform everyday instruction. 

2.7. Five Commitments Shared by LT/LP Theorists 

In summary, the concept of a LT/LP has emerged as a means to capture and communicate 

the theoretically-driven empirically-based patterns of learning as students move from naive 

to sophisticated thinking. They differ fundamentally from solely logical deconstructions of 

the mathematical ideas, although conducting such analyses can serve as one resource in 

conjunction with rich understandings of students’ experiences and cultural resources. 

Learning trajectories depend on learning theories that value the investigation of a student’s 

ideas and require instructional settings and tasks devoted to stimulating and exploring a 

learner’s ideas. All LT/LP theorists working from the HLT foundation share five 

commitments: 1) LT/LPs are conjectures that involve modelling learning processes with 

respect to specific domains within a constructivist environment and a socio/cultural 

perspective; 2) articulation of the levels must be linked to theoretical mechanisms that 

account for transitions to more sophisticated levels; 3) instruction plays an essential role in 

students’ progress along LT/LPs; 4) "all students will follow not one general sequence, but 

multiple (often interacting) sequences" (NRC, 2007, p. 221); and, 5) the LT/LPs will 

become apparent to the degree to which the instructional interactions support the 

emergence of student thinking. LT/LPs are investigated over extended periods using design 

studies and teaching experiments.  
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3.  Around What Topics has the Research been Concentrated? 

Papers were collected in order to summarise the distribution of topics of LT/LPs among 

current research. During the initial review, papers were included if they used the phrase 

“learning trajectory,” “learning progression,” “instructional theory,” “conceptual change,” 

“developmental progressions,” or “longitudinal analysis,” and were published within the 

last 15 years. Reviews of the research on LT/LPs provided a rich source of relevant 

literature (Lobato & Walters, 2017; Groff, 2017). The resulting 124 papers were 

categorised as: 1) presenting an LT/LP for a content domain, 2) general theoretical papers, 

or 3) applications of LT/LPs to curriculum, teaching, or informal assessment. Of the 124 

papers, 85 discussed specific LT/LPs. Some of the 85 papers reported on the same LT/LP, 

often written by the same author(s). In order to examine the distribution of different 

LT/LPs, duplicates were eliminated, reducing the total number of distinct LT/LPs to 75. 

The distinct LT/LPs are listed in Appendix A, and the related set of references is listed in 

Appendix B.  

All of the remaining analyses were conducted on this set of 75 LT/LPs. Table 2 describes 

the distribution of LT/LPs by grade level. Equal percentages of LT/LPs were located in 

elementary and middle grades with a very small number focused on high school topics.  

Table 2. Summary of LT/LPs (total = 75) by grade level. 

Pre-K 
Pre-K and 

elementary 
Elementary 

Elementary and 

Middle 
Middle only 

Middle and 

High School  

High School 

only 

0 0 30 (40%) 8 (11%) 30 (40%) 4 (5%) 3 (4%) 

A second analysis (Table 3) revealed that a significant majority of the LT/LPs published in 

the literature do not use formal psychometric models, although a few researchers have 

conducted multiple studies using measurement models with their LT/LPs; given the coding 

scheme by LT/LP, those are counted once. Further, the number of published papers on 

these topics seems to lag behind the current activity involving psychometric models. 

 

Table 3. Prevalence of formal psychometric models in mathematics LT/LP database 

Formal measurement No formal measurement 

14 (19%) 61 (81%) 

 

The final analysis examined the topics in which LT/LPs were concentrated (Table 4). It 

revealed that the majority of LT/LPs published are on number concepts (45%), followed 

by algebra, including early algebra (24%), then measurement (12%) and then probability 

and statistics (11%). Geometry has the fewest LT/LPs (8%), but the van Hiele-based 

research is not included in the analysis (though it could be classified as a domain-specific 

progression).  
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Table 4. Distribution of LT/LPs (total = 75) by topic. 

Number   Measurement Geometry 
Algebra and 

Functions 

Probability and 

Statistics 

34 (45%) 9 (12%) 6 (8%) 18 (24%) 8 (11%) 

 

This analysis confirms reports by others (Groff, 2017; Daro et al., 2011) that the 

distribution of topics covered by LT/LPs is spotty. Should a major effort be proposed to 

build a next generation learning approach resting on a foundation of LT/LPs, a major 

research effort would be required. 
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4.  What is known about the Use and Outcomes of LT/LPs in Curriculum, 

Instruction, and Formative Assessment? 

LT/LPs are models of student thinking that sit within a larger theoretical and 

methodological paradigm of constructivism and socio-cultural perspective. These frames 

are essential to provide scaffolding for the design and conduct of the design studies and 

teaching experiments, and to generate the data and the interpretive frameworks to develop 

the results. LT/LPs do not affect student learning directly, rather they are mediated through 

the variety of educational components shown in Figure 1. These practices are viewed as 

places where LT/LPs are applied.  

 

Figure 1. A rudimentary logic model for the use and impact of learning trajectories on 

educational components. 

 

4.1. LT/LPs and Curriculum Materials 

LT/LPs can be used to conduct content analyses of curriculum materials (NRC, 2004). The 

purpose of many content analyses (Adams Tung, Warfield, et al., 2000; AAAS, 1999a, 

b) is to examine the alignment of curricular materials with curriculum [standards]; 

however, other lenses, including learning trajectories, can be used. So far, these analyses 

are typically conducted on the materials only (Nguyen & Confrey, 2014; Olson, 2014; 

Stephens and Armanto, 2010). 

A second use of research relating LT/LPs and curriculum investigates the question “to what 

degree are curricular goals met at each grade level based on the students’ progress along a 

LT/LP?” The question is investigated by postulating relationships between curricular 

targets and levels of a LT/LP, and determining their correspondence using a design based 

on cross-sectional analysis. For instance, Ayalon, Watson, and Lerman (2016) analysed the 

Israeli functions curriculum by grade (grades 6-12), identifying key ideas at each grade. 

Using a learning progression for functions derived from the research on functions by 
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Leinhardt, Zaslavsky, and Stein (1990), the authors generated a sequence of three 

open-ended tasks designed to measure student understanding of rate of change, covariation, 

and correspondence in various situations. Responses to the tasks were collected 

cross-sectionally by grade level (7th-11th) by students categorised as either high- or 

average-achieving learners. Results indicated high-achievers lagged a grade below 

expectations and average-achievers lagged from 1-4 grades below. Though they concluded 

that rate of change and correspondence of functions were eventually adequately learned by 

all students, this was not true for relating functions to situations. Investigating the degree 

to which students meet grade level expectations in relation to their progress on LT/LPs 

provides a reasonable means to monitor the extent of the gap between students’ learning 

needs and the grade-level expectations. 

4.2. LT/LPs, Instruction, and Professional Development 

Often the most direct application of the research on LT/LPs is the study of their use in 

classroom instruction. Teachers can use LT/LPs to help plan instruction, guide the selection 

of classroom tasks, and facilitate classroom discussions. The LT/LPs can also help teachers 

interpret evidence and make informed judgments about how students in a class might differ 

in terms of their understanding of key concepts and practices. Instructional leaders, 

coaches, and administrators can use the LT/LPs as a foundation for content-based 

professional development, to deepen teachers' understanding of how students learn.  

Research on instructional perspectives on LT/LPs has focused on how teachers use LT/LPs 

to modify instruction. Numerous studies were conducted using the equipartitioning LT/LP 

with 56 preservice teachers (Mojica, 2010), practicing teachers (P. H. Wilson, 2009), and 

with 24 teachers at the same elementary school (Edgington, 2012; Wilson, Mojica, & 

Confrey, 2013; Wilson, Sztajn, Edgington & Confrey, 2014). From observation and 

analysis of the types of instructional activities affected by teacher’s experience with the 

LT/LP, the researchers reported increases in the mathematical knowledge for teaching 

(MKT), especially regarding their pedagogical content knowledge (PCK) and, to a lesser 

but still significant degree, their subject matter knowledge for teaching (SMK) (Ball, 

Thames, & Phelps, 2008). 

Suh and Seshaiyer (2015) conducted a teaching experiment with six teachers from a cohort 

of 37 3rd- to 8th-grade teachers who were studying an algebra LT/LP. The professional 

development was designed for vertical teaming and the use of lesson study. An algebra 

lesson was modified for use at three different grade levels. The researchers found that the 

teachers strengthened their content knowledge, including their understanding and use of 

conceptual principles, their ability to use modelling strategies, the way they selected and 

modified problems, and their anticipation of students’ misconceptions, strategies, and 

representations. They also developed more assessment practices around focusing on 

multiple levels of the LT/LP. 

Studies focusing on the relationship between different kinds of epistemological objects in 

LT/LPs and instruction contribute further to understanding the view of learning associated 

with LT/LPs. For example, Wiig, Silseth, and Estad (2018) conducted a study in a lower 

secondary school in Norway of intercontextuality in learning trajectories. Using 

interactional analysis, they studied how and to what extent teachers drew upon the 

relationships between everyday and scientific knowledge (including mathematics), to form 

dialogic interactions. They found that frequently teachers superficially draw those 

connections, and concluded that teachers “need to be more conscious of the challenges of 

framing interactions that students consider significant as resources for their engagement in 
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the social creation of intercontextuality” (p 17). They drew on Engle’s (2006) work to claim 

that “creating intercontextuality involves not only knowing but also doing and that doing 

inherently entails the exercise of human agency” (p. 18). Their study demonstrated the 

potential connections among LT/LP levels connected with learner’s experience, 

learner-centred instruction, and student agency.  

Another study of instruction connected epistemic content of LT/LPs and agency (Shinohara 

& Lehrer, 2018). Situated in a large-scale LT/LP study of sixth grade students (Lehrer, 

Kim, Ayers & Wilson, 2014), the study reported on observations and interviews of students 

as the students participated in forms of epistemic practice (Cetina, 2009), involving 

visualising, measuring, and modelling variability. When asked to describe how their 

thinking had changed over the course of instruction, students identified four aspects of the 

classroom activity: 1) how students’ invention of representations, measures, and models of 

variability made variability evident to them, 2) how critique offered opportunities to 

decipher and perhaps contest the inventions of others, and so elaborate the grounds of 

knowing, 3) how recontextualisation provoked consideration of how previously developed 

ways and means could be productively deployed to interpret new contexts of variability, 

and 4) how coordination consisted of developing hybrids of practices as students learned 

to orchestrate these practices to interpret different sources and types of variability, such as 

sample and sampling variabilities. They further describe how these common aspects also 

emerged to foster individual differences in values and dispositions. The study illustrates 

how LT/LPs can be leveraged through instructional designs, not just to learn a disciplinary 

concept as the target of an LT/LP, but to support students to participate with agency within 

an authentic statistical practice with opportunities for self-expression and critique 

(Shinohara & Lehrer, 2018, p. 20). 

4.3. LT/LPs and Classroom/Formative Assessment 

LT/LPs are also applied within the context of “classroom assessment” (NRC, 2003; 

Pellegrino, Chudowsky, & Glaser, 2001; Pellegrino, DiBello, & Goldman, 2016). 

Classroom assessments are defined as “assessments for supporting students while learning 

by providing relevant, timely, detailed, and actionable feedback on their current 

progress...to guide instructional decision-making” (Confrey, Maloney, Belcher, et al, 

2018). They build on the foundation of formative assessment (sometimes called 

“assessment for learning” (Carless, 2017; Black & Wiliam, 1998; Black, Harrison, Lee, 

Marshall, & Wiliam, 2004) or “assessment as learning” as a “learning process which 

scaffolds students’ agency and ability to self-regulate their learning” (Fletcher, 2018, p. 4). 

Heritage (2007, 2008) identified learning progressions as one of four key elements that 

teachers must understand in order to effectively use formative assessment practices. The 

learning progressions act in concert with the other three core elements of: 1) identifying 

the gap between a teacher’s learning goals and the knowledge state of the students, 2) using 

feedback, and 3) promoting student involvement. She argued for assessment practices to 

create a system to scaffold student learning around an appropriately-sized zone of proximal 

development (Vygotsky, 1986), provide relevant and timely feedback on student progress, 

and involve students centrally and reflectively in the process. Heritage (2008) conjectures 

that the fine grain-size of LT/LP levels can assist students in monitoring and evaluating 

their own progress in order to “have a manageable way to be self-reflective about their own 

learning while they are learning.” (p.7.) Classroom assessment is connected to the 
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self-regulated learning, and, increasingly, concept of agency2, in which students are viewed 

as actors who “make choices and whose actions shape assessment practices in both 

anticipated and unexpected ways” (Adie, Willis, & van der Kleij, 2018, 

p. 1). Because LT/LPs can provide students and teachers access to patterns in student 

reasoning and uses of language, they can contribute to strengthening reciprocal relations 

between teachers and students (Fletcher, 2018), supporting “agentic engagement" (Reeve, 

2012; Reeve & Tseng, 2011). These can contribute to the implementation of formative 

assessment practices such as peer- and self-assessment, increasing students’ understanding 

of the criteria by which they are being judged, and collecting and identifying evidence of 

their own learning in order to develop academic values such as competency, autonomy 

(self-determination), and relatedness (Adie, Willis, & van der Kleij, 2018, p.3).  

The use of formative assessment practices with learning trajectories has also been 

accompanied by explicit use of student work artefacts to guide the teachers’ attention to 

variations in student’s levels of thought (Petit, 2011; Lehrer et al, 2014; Blanton, Brizuela, 

Gardiner, Sawrer, & Newman-Owens 2015; Siemon, Barkatsas, & Seah, 2019). In these 

cases, analysis of those artefacts has been shown not only to act as evidence of progress 

along the trajectory (Ayalon et al., 2016), but to act as a means to achieve profound amounts 

of professional development (Suh & Seshaiyer, 2015). Yerushalmy, Nagari-Haddif, and 

Olsher (2017) emphasise the value students’ examination of each other’s work as a central 

part of the learning process, and have built technologies to promote the exchange of those 

artefacts and facilitate careful sequencing by teachers. 

Supovitz, Ebby, and Sirinides (2013) developed a measure of learning trajectory-oriented 

formative assessment called TASK that measures four domains: teachers’ knowledge of 

mathematics, analysis of student understanding, knowledge of mathematics learning 

trajectories, and instructional decision-making in addition, subtraction, fractions, 

proportions and algebra. They scored teacher responses on a four-point rubric ranging from 

general, to procedural, conceptual and learning trajectory-based responses. More than 1200 

teachers in K-10 from largely urban and urban fringe districts responded to the survey. 

To evaluate the learning trajectory proficiency of teachers, they were asked to order a set 

of student responses relative to three categories, evidence of solid, transitional, or no 

mathematical thinking; their responses were subsequently evaluated relative to the 

reasoning provided for the ordering. In grades 6-8, only 14% selected the correct order, and 

24% ranked one of the lowest two responses as advanced; however, in 9-10 grades, 81% 

correctly ordered the tasks and more than half identified the most sophisticated thinking. 

Few teachers, however, could articulate the reasons for their ranking developmentally. 

Investigating teachers’ instructional responses, the researchers found only between 2%-9% 

(across the different grade levels) choose a learning trajectory-based response. The data 

suggest that these American teachers at lower grades are excessively procedural in their 

orientation, and that while middle and early high school teachers are more conceptual in 

their orientation to examining student work, few take a learning-trajectory approach, which 

would allow them to view current learning in relation to a bigger picture of development. 

Leahy and Wiliam (2011) offered a contrasting approach to learning progressions from 

within a perspective of formative assessment, describing learning progressions as simply 

an agreed-upon view of “what it is that gets better when someone gets better at something” 

                                                      
2 Emirbayer and Mische (1998) define agency as: temporally constructed engagement by actors of different structural 

environments - the temporal-relational contexts of action - which, through the interplay of habit, imagination and 

judgment, both reproduces and transforms those structures in interactive response to the problems posed by changing 

historical situations (p. 971). 
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(p.1). They grounded their approach in Gagné’s learning hierarchies as “a set of specified 

intellectual capabilities having, according to theoretical considerations, an ordered 

relationship to each other” (Gagné, 1968 p. 2, cited in Leahy & Wiliam, 2011). 

They recounted Denvir & Brown’s (1986a, b) experiment in number skills, in which the 

performance of 41 students on 47 skills was rank-ordered to produce an S-P table (Sato, 

1975), whose analysis led to an empirically-supported, seven-level tiered hierarchy. 

After subjecting those empirically-derived results to a logical analysis, Denvir and Brown 

claimed to have produced a useful and valid local progression. Leahy and Wiliam 

suggested that a similar protocol could be developed for local use by teachers to form their 

own local learning progressions (which, they suggested, would be widely and willingly 

implemented because the progressions would already be embedded in the day-to-day work 

of the teachers). The example provides a provocative contrast with many approaches to 

LT/LPs reported in this paper, drawing as it does from a contrasting theoretical approach 

(behaviourism as opposed to constructivism), and suggests one can build progressions 

informally through the local activities of teachers, a position consistent with a formative 

approach. While an ordering by difficulty would result, and levels would be formed 

inductively from the clusters in that ordering and likely have strong credibility with 

teachers, there is a substantial risk that the tasks will not differ substantially from ordinary 

classroom exercises. As a result, the resulting LT/LPs may pay inadequate attention to the 

need to elicit a broad range of student ideas (including novel or unexpected ones), as 

conceptualised in the design-based meaning of LT/LPs. While some would see this as a 

reason to disqualify these as LT/LPs, one can also recognise value in their solid empirical 

connections to the work of practitioners and their potential to contribute to, and potentially 

accelerate, the overall body on work on LT/LPs. To signal the difference in this use of 

LT/LP from the design-based LT/LPs, these are included and labelled as “classroom 

behaviour-based LT/LPs”3. 

                                                      
3 This classroom behaviour-based LT/LPs bears a resemblance to a “bottom-up” approach described by Heritage 

(2008) as involving “curriculum content experts and teachers in developing a progression that is based on their 

experience of teaching children (p. 12).  
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5.  How are LT/LPs Measured? 

A major thread of LT-oriented research in assessment involves the development and 

validation of assessments of learning trajectories using formal measurement approaches. 

These assessments, unlike high-stakes or summative assessments, will be specific to the 

curricular topics currently being taught, and the results returned to students and teachers in 

a timely way. Their primary purpose is to provide teachers with information about the 

progress of their classes along the LT/LPs, in order for teachers to modify their instructional 

strategies to help more students be successful. The foremost questions to be asked of the 

measurement approach, then, is “what information can the measurement of LT/LPs provide 

and how can that information inform decision-making in a timely and relevant way?” 

More precisely, the questions might be: 

1. (For a teacher) What ideas do my students hold and what do these tell me about the 

quality of their understanding? 

2. (For a teacher) What is the range and distribution of my students’ ideas? 

3. (For a teacher) Where are my students along a LT/ LP? (to know how to focus my 

efforts and provide the appropriate learning support to the right students in a timely 

and effective way) 

4. (For a student) Where I am along an LT/LP? (so I can have some confidence in 

what I know, and understand what I need to work on) 

5. (For both) Are my students (am I, as an individual student) learning? 

One way to consider what an LT/LP assessment provides that is different from regular 

assessments is to contrast the information gleaned from a domain-sampling test and a 

LT/LP test (Briggs & Peck, 2015). A domain-sampled test simply draws items from 

different areas of the content, whereas an LT/LP assessment is structured around the 

sequence in the LT/LP. Because of the structure of a LT/LP, the information provided to 

the teacher can be structured and compact, showing the students’ degree of correct 

responses on specific levels, and thereby identifying which students need help on which 

levels. See Figure 4 (Section 6) for an illustration. If standards of good measurement are 

applied, the information will be valid and fair, and to some degree, reliable.4 

5.1. Approaches to Building Measures of LT/LPs 

Wilson and colleagues have played a major role in the development of methodologies for 

constructing measures of learning progressions. Their Berkeley Evaluation and Assessment 

Research (BEAR) assessment framework is grounded in four “principles of sound 

measurement:” 1) a developmental perspective, 2) a match between instruction and 

assessment, 3) the generating quality of evidence, and 4) management by instructors to 

allow appropriate feedback, feed-forward, and follow-up (M. Wilson, 2009). The general 

application of these principles to create an LT/LP assessment involves creating a construct 

map consisting of a set of progress levels for a given subject, undertaking item design, 

delineating an outcome space, and producing a Wright map of item difficulties from a 

                                                      
4 The meaning of reliability will probably have to be reconsidered from within the LT/LP perspective, in which rapid 

student intellectual growth is desirable. 
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Rasch Item Response Theory (IRT) analysis. In mathematics and statistics, the BEAR 

method, a modified version of it or another statistical approach, has been applied to create 

measures of LT/LPs in functions (Bernbaum Wilmot et al, 2011), area measure (Lai, 

Kobrin, DiCerbo, & Holland 2017), proportion and rational numbers (Carney & Smith, in 

press; Ketterlin-Geller, Shivraj, Yovanoff, & Basaraba, 2019), algebra readiness 

(Ketterlin-Geller, Shivraj, Basaraba, & Schielack, 2018), quadratic functions (Graf, Fife, 

Howell & Marquez, 2018), data modelling (Lehrer et al 2014), and geometric similarity 

(Shah, 2018), to mention a few.  

5.2. Validation of Measures of LT/LPs 

Other measurement teams have described their work as “validations of LT/LPs,” using this 

language to include the processes of both building and validating trajectories. Graf and van 

Rijn (2016) suggest that the LT/LPs that result from the design-based studies and syntheses 

of the literature be viewed as “provisional,” and require “empirical verification and 

theoretical challenge” (p. 167). They situate their studies in the larger context of empirical 

verification, consideration of rival hypotheses, the recognition that one does not validate 

the measure itself but rather the use of the measure (Messick, 1989), and the value of a 

larger interpretation/use argument (Kane, 2013).  

The majority of measurement approaches to the validation of LT/LPs include many or all 

of the following steps: 

1. Synthesise existing research to describe LT/LP levels, 

2. Obtain external reviews of the LT/LPs by experts, 

3. Develop tasks to map to the LT/LPs, 

4. Conduct think-aloud interviews of students solving the tasks to look for construct 

validity,  

5. Conduct large-scale cross-sectional data collection for “empirical recovery” of the 

LT/LP, and  

6. Examine consequentially whether the trajectories provide a meaningful lens into 

the understanding of student responses. 

“Empirical recovery,” the process of seeing if the data from an assessment support the 

hypothesised structure of an LT/LP, requires careful examination of the theoretical 

assumptions concerning task design, test assembly, test scoring and sample selection 

(Bennett, 2015). It also depends on the process of selecting a psychometric model that is 

influenced by how the LT/LP is conceptualised (Graf & van Rijn, 2016). For instance, most 

design-based LT/LP theorists agree that levels are not rigidly compartmentalised, that 

students may fluctuate across levels, and that particular numerical values and unfamiliar 

contexts in tasks may cause performance to vary (Graf & van Rijn, 2016), but they hold 

these beliefs to varying degrees. Depending on whether levels and their scoring are viewed 

as discrete or continuous (or a mixture), psychometric modelling approaches may include 

latent class models (Steedle & Shavelson, 2009), cognitive diagnostic modelling 

approaches (CDM) or IRT (Mislevy, Almond and Lukas, 2003; De Boeck, Wilson, 

& Acton, 2005). Briggs and Peck (2015) examined various approaches to the measurement 

of LT/LPs, evaluating their potential to inform and define models of growth.  
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Recovery also requires a careful examination of the relationship of the items to the LT/LP. 

The process of empirical recovery will likely result in suggestions for revisions and 

modifications for the LT/LPs. For example, in building and validating a diagnostic measure 

for student learning trajectories in middle grades mathematics, Confrey, Toutkoushian, and 

Shah (2019) followed the application of IRT models with an iterative application of linear 

regression to identify potentially non-conforming items. They postulated three sources of 

variation as explanations for potential non-conformance of items: construct-irrelevant 

variation, intra-level variation, and inter-level variation. Their team, with expertise in both 

the learning sciences and psychometrics, examined the data (nature of the sample, 

distribution of responses, performance of similar items) to decide to either remove the item, 

adjust its difficulty, flag and retain it as an outlier, move it to another level, resequence the 

level, or occasionally decide to rebuild the LT/LP. They factored in consideration of the 

students’ opportunity to learn about the construct underlying the level. The team thus 

viewed validation as an ongoing process (Confrey & Toutkoushian, in press; Confrey, 

McGowan, Shah, et al., 2019; Shah, 2018).  

Graf and van Rijn (2016) proposed a model for the validation of LT/LPs (Figure 2). 

They emphasised the importance of considering competing models and recognising the 

field’s need for further elaboration on the evaluation of instructional efficacy. 

Figure 2. Proposed cycle for validating a learning progression, from Graf & van Rijn (2016). 

 

5.3. Distinguishing between a LT/LP and its Measure 

A thorny definitional issue emerges in the context of measurement and the use of the 

terminology “learning trajectory/learning progression.” Some measurement experts 

describe the result of their work as building a LT/LP itself, not as building a measure of a 

LT/LP. For example, Adams, Jackson, & Turner (2018, p.2) defined a learning progression 

as “a scale that defines the constructs that constitute educational progress in a particular 

domain (say, reading or mathematics).” This conflates the concept of a scale of educational 
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progress with the constructs that reside in the progression. Naming such measures as 

LT/LPs risks leaving the field unable to distinguish between LT/LPs built through 

extensive, theoretically-rich design studies, on the one hand, and those which are primarily 

measures-based after synthesis of existing research, on the other.  

The value of analogous distinctions has been established in a variety of fields. Geometers 

distinguish between the line segment AB and the measure of that segment (mAB), or 

between an angle ABC and the measure of the angle (m⦣ABC). The distinction signals the 

use of axioms of geometry and axioms of measurement. Scientists distinguish between the 

concept of “heat”5 and its measurement scale, “temperature.” The concept “heat” is used 

to create scientific explanations, while “temperature” is used as a measurement used in 

empirically testing those ideas. In science, it is essential for the concept and the measure to 

be used conjunctively, with the recognition that errors and opportunities for advances may 

come from the concept, the measure, or their interaction. 

To address the distinction among LT/LPs, those built from theoretically-based, 

empirically-grounded design studies will be referred to here as design-based LT/LPs, while 

those built as measures will subsequently be referred to as measures of LT/LPs, written as 

mLT/LP. Some design-based LT/LP scholars question the adequacy of mLT/LPs, arguing 

they distort the qualitative aspects of the levels (Battista, 2011; Stacey & Steinle, 2006), 

but most see that finding ways to measure LT/LPs contributes to the effort to scale their 

use. 

Distinguishing LT/LPs and mLT/LPs offers numerous advantages, the first of which is 

ensuring that both design-based LT/LPs and measures of LT/LPs meet their respective 

theoretical and methodological standards. For example, design-based LT/LP methodology 

may employ clinical interviews (Opper, 1977) while measure-based approaches use 

think-alouds (Ericsson & Simon, 1993), and the two approaches fundamentally differ as 

one is designed to explore student thinking while the other is designed to check if the 

reasoning associated with the task reflects the underlying measurement construct. This 

separation also permits researchers to use design-based insights to inform the development 

and elaboration of the measures, while simultaneously allowing the results from LT/LP 

assessments to shed light on the design-based LT/LPs. For example, data from assessments 

can show that an item or set of items is more difficult than expected, which can lead the 

development team to adjust levels, clarify the meaning of a level, or fine-tune particular 

items. Finally, recognising the difference between LT/LPs and mLT/LPs can foster 

mutually respective exchanges and collaborations between the learning scientists and 

measurement specialists and clarify the underlying LT/LP.  

5.4. LT/LPs as Deep Collaborations among Learning Scientists, Practitioners and 

Measurement Experts 

A collaboration among Lehrer, Schauble, Wilson and colleagues provides an example of a 

project that has combined learning sciences and measurement perspectives within a 

program of research around data modelling (Lehrer et al., 2014; Lehrer, 2013). Lehrer 

articulated a model of data modelling and conducted years of classroom-based design 

studies around the constructs of statistical reasoning, encompassing the development of 

young learners’ understanding of variability, distribution, measures of centre and 

                                                      
5 Science educators also explain that the term heat is itself misleading and informal and that the more accurate 

distinction is between kinetic/thermal energy and temperature. I chose to use “heat” in the analogy to reach a wider, 

less expert audience. 
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variability, and chance. Partnering with Wilson, Lehrer proceeded to create construct maps 

for the related ideas in statistical reasoning. They used both unidimensional IRT and a 

multidimensional random coefficient multinomial logit model (MRCML) to model the 

student responses. They further engaged in creating a professional development model that 

involved teachers in strengthening their knowledge of the content, understanding the design 

of a set of lessons, and employing the assessment system to interpret student responses. 

This collaborative work flowed multi-directionally among the three teams--the 

practitioners, the learning scientists, and the measurement specialists--during 13 day-long 

workshops conducted across two years. Lehrer et al. (2014) report four distinct forms of 

formative assessment practices: using the items to gauge correctness of student 

performance, using the items to generate increased student participation, intentionally 

eliciting diverse student responses from construct maps, and teachers’ efforts to compare 

and contrast results. Lehrer et al. (2014) refer to this deeply collaborative work among 

learning scientists, measurement experts, and teachers as leading to the consideration of “a 

learning progression6 as a trading zone (sensu Galison, 1997) in which different realms of 

education practice intertwine, much as a cable is constructed” (p 54) (with the realms 

identified as learning theory, assessment, instruction and professional development).  

This type of collaboration suggests a means (Figure 3) to develop and refine the use of 

LT/LPs in improving classroom instruction, by combining all three approaches described 

in previous sections. In Lehrer et al.’s (2014) study, the foundation of the work (in this 

case, data modelling) was solidly based on years of prior research on learning statistical 

reasoning. The project itself was conducted as a design study; hence it represented an 

example of “design-based LT/LPs.” The practitioners in the collaboration were active 

participants in contributing to and shaping the ideas, providing feedback on materials, and 

testing the conjectures in a manner substantially consistent with Leahy and Wiliam’s 

(2011) “classroom- behaviour-based LT/LPs,” solidly rooted in practice. And Wilson’s 

contributions to the “measures of LT/LPs” offered insights into the structure of the 

interrelationships among the LT/LPs. Thus, the three approaches to the study of LT/LPs 

can converge within a trading zone, to create a stronger, co-evolved LT, through which 

would likely be versions of “design-based implementation research” (DBIR) (Fishman, 

Penuel, Allen, & Cheng, 2013) or “networked improvement communities” (Bryk, Gomez, 

& Grunow, 2010; Russell, Bryk, Dolle, et al., 2017). This integrated approach has the 

advantage of reducing (or avoiding altogether) the need to conduct separate design studies 

and measurement initiatives. At the same time, it improves the practicality of the approach 

and its immediacy for and credibility with teachers.  

 

 

 

 

 

 

                                                      
6 Lehrer et al. (2014) make a distinction between a learning progression - representing the larger overall system that 

addresses the implementation of the model of data modelling progressively through the combined activities of 

learning, teaching, and assessing over long periods of time - and learning trajectories - the “prospective pathways of 

conceptual development in outcome space defined by constructs and learning performances” (p. 53). 
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Figure 3. Trading zone among three approaches to LT/LP to generate a richer “co-evolved” 

LT/LP. 
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6.  What Evidence is there from Taking LT/ LPs to Scale? 

If the increased attention paid to learning trajectories/learning progressions is to translate 

into widespread positive impact on student learning, the applications of LT/LPs must be 

taken to scale. A few research teams are tackling this challenge. Going to scale requires the 

use of a large number of LT/LPs across a broad span of grade levels in multiple locations 

(schools, districts, states, regions and countries), but it requires more than increasing the 

numbers of participants. It requires one to weave all the components of the LT/LP into an 

integrated system that incorporates careful attention to the connections between LT/LPs 

and the curriculum (materials), instruction, classroom assessment (formative and 

measurement-based), and all forms of professional development, support, and capacity 

building.  

Going to scale with LT/LPs in a way that authentically represents the research on LT/LPs 

requires that the focus of all the components be on student learning. Classrooms must 

become places where student ideas are driving the interactions, as the students undertake 

series of tasks designed to elicit their thinking and to move them progressively toward more 

sophisticated thinking. Teachers carry out the critical role of facilitating student learning, 

based on listening to student ideas, collecting and analysing all forms of evidence of their 

thinking and understanding, and providing them appropriate and timely opportunities to 

learn and tackle the next ideas and obstacles. A focus must be on building their 

self-awareness as learners, strengthening their agency, and inviting them into a reciprocal 

partnership on assessment (Adie, Willis, and Van der Kleij 2018; Fletcher, 2018).  

Assessment of LT/LPs plays a central role of generating feedback in the instructional 

process. Emerging efforts to systematically provide that feedback through repeated 

measures, across all learners, and in a timely way will contribute significantly to making 

classroom instruction and learning a more responsive and dynamic process. 

While contributing to ways to become more systematic with the measures, it is essential, 

according to theory of LT/LPs, for the LT/LPs to be shaped by and remain sensitive to the 

local conditions and resources, and to be able to constantly evolve (Delgado & Morton, 

2012). 

In order for the LT/LPs to evolve and to be locally sensitive, the activity of learning must 

recognise the requirement for ongoing partnership among teachers, learning scientists, and 

measurement experts in a brokered “trading system” (Lehrer et al., 2014). Across the globe, 

we have seen, and increasingly are seeing, significant concentrated efforts to undertake the 

challenge of moving to scale. There is much to be learned from these initial efforts.  

Clements, Sarama and colleagues (Clements & Sarama, 2011; Sarama, Clements, Wolfe, 

& Spitler, 2012; Clements, Sarama, Wolfe, & Spitler, 2013) have reported extensively on 

a TRIAD (Technology-Enhanced, Research-Based Instruction, Assessment and 

Professional Development) study of 42 schools located in two urban low-resource 

communities. Teachers used their “Building Blocks" curriculum (Clements & Sarama, 

2007) and accessed their web application “Building Blocks Learning Trajectories” with a 

variety of videos explaining examples of student work. Primary grade teachers were 

provided 12 days of professional development as they implemented the curriculum. 

Students in the experimental group scored significantly higher than those in the control 

group, and African-American students showed increased benefits in the experimental 

compared to the control group. 
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Lehrer and colleagues (Lehrer, Jones, Pfaff & Shinohara, 2017) in a decade-long research 

program on supporting the development of student reasoning about variability by 

introducing students to statistical practices of data modelling, identified and built learning 

trajectories for five sub-constructs: data representation/visualization (DaD), conceptions of 

statistics (CoS), conceptions of chance (Cha), understandings of modelling variability 

(MoV), and conceptions of informal inference (InI). Measures of student learning were 

designed and validated for each sub-construct (Lehrer et al, 2014). The research culminated 

in an eight-week design experiment involving middle grades students and teachers, 

studying the ways and degrees to which students learned to engage in and adopt the 

practices of data modelling. A randomised cluster approach was implemented across 20 

schools in four districts, matched with control schools. Hierarchical linear modelling and 

item response modelling of multiple measures of student learning, including those 

developed previously by the researchers, supported the efficacy of data modelling for 

promoting the development of statistical reasoning in the early middle school years, 

showing a moderate effect size in the difference between experimental and control groups. 

In related sub-studies, they also demonstrated that the degree to which teachers adopted the 

methods of having students invent and compare representations, measures, and models 

predicted student achievement. Forms of teacher implementation were also traced from 

professional development settings where teachers rehearsed discourse moves that would 

sustain student engagement and promote statistical reasoning to teacher use of these forms 

of discourse in their classrooms. Using case studies, they reported on specific students’ 

epistemic practices and resulting agency, discussed in a previous section (Shinohara & 

Lehrer, 2018). This canon of work demonstrates the challenge of a full research programme 

on learning trajectories. Developing design-based LT/LPs alone requires multi-year studies 

of the evolution of student thinking; such work is accompanied by and extended by years 

more to design and revise relevant curricular materials, (especially in novel topics for a 

grade level such as data modelling), and create and validate measures of LT/LPs. Only then 

can the work be taken to classrooms at scale, providing curricular materials and associated 

professional development, with evidence from multi-method studies. The work at scale 

often provokes new challenges for the LT/LP. For instance, the need for explicit rehearsal 

of forms of thought-provoking discourse during professional development was inspired by 

the challenges of the need for rapid induction of teachers into data modelling practices that 

were posed by the scale of the design experiment. 

At the upper secondary level, Siemon, Callingham, Day, Horne, Seah, Stephens, and 

Watson (2018) conducted a three-year study of the development and implementation of 

evidence-based learning progressions for algebraic reasoning (Day, Stephens, & Horne, 

2017), spatial reasoning (Horne & Seah, 2017), and statistical reasoning (Watson & 

Callingham, 2017). The project involved 80 teachers and 3500 students in grades 7-10. 

Conducted in three phases, the project’s goals were to develop tasks, design scoring rubrics 

and collect initial student data to conduct Rasch analysis for the purpose of articulating the 

LPs. Year two goals included the development of multiple forms of assessment, the conduct 

of teacher surveys, and the development of instructional materials for targeted teaching 

(Siemon, 2017). Reporting specifically on spatial reasoning, Siemon, Horne, Clements, et 

al. (2017) described a learning progression with seven zones defined by setting cut scores 

within a Rasch analysis. Each zone was accompanied by teaching implications (no report 

was offered on the effects of the use of tool on student or teacher learning.) The authors 

postulate that the LPs support teachers in seeing the big ideas within the Australian 

Curriculum: Mathematics (ACM), and in making more informed curricular decisions.  
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Going to scale also can mean leveraging digital technology extensively to support the use 

of learning trajectories across grades and topics and to return assessment data in real time 

to students and teachers. Confrey, Gianopulos, McGowan, Belcher and Shah (2017) report 

on their creation and use of a digital learning system (DLS), “Math-Mapper 6-8,” (MM6-8) 

at three middle grades schools in two districts. The system was designed to help teachers 

respond precisely and rapidly to classroom diagnostic assessments built to measure 

progress along LT/LPs. The assessments are administered immediately after initial 

instruction in a topic, and based on the demonstrated needs from the data, teachers 

personalise their subsequent instruction. Retesting and practice are made available to 

students to gauge subsequent progress along the LT/LPs.  

To achieve the designer’s goal to focus the teachers on learning targets instead of standards, 

the system was designed with a map of nine big ideas organised hierarchically into 23 

clusters made from 62 learning trajectories. Each LT is linked to the related Common Core 

State Standard for Mathematics (U. S.). Progress along learning trajectories is measured at 

the level of a cluster in the map using a diagnostic assessment (digitally delivered and 

scored, 30-minute duration, multiple forms and different-grade level tests). Reports are 

immediately digitally returned to both students and teachers in the form of “heat maps,” 

with the levels shown from bottom to top and the students ordered from lowest- to highest- 

performing on each construct (from left to right). The cells are colour-coded showing 

scores from orange (incorrect) to blue (correct). The sweeping Guttman curve quickly 

informs teachers which students and which levels need more attention (see Figure 4). 

Figure 4. A heat map for a LT/LP with the levels displayed vertically and students ordered 

horizontally from lowest to highest performing on the measure. Orange indicates incorrect 

responses and blue correct ones. 

 

 

Confrey et al. (2017) report on the results of the diagnostic assessments in algebra with 

MM6-8 with three schools in two districts serving more than 2000 students. Simple 

regression analyses empirically recovered the LT showing lower mean correct proportions 

per item for ascending progress levels for each of the four LTs (describing patterns and 

relations using algebraic expressions, translating, substituting and finding equivalent 

expressions, and representing and solving equations and inequalities in one variable). 

Confrey et al. (2019) report on how an ongoing process of validation that involves a deep 

collaboration among learning scientists, psychometricians, and practitioners is required to 

support progress in using the DLS at scale. Those collaborations include innovations in 

applying psychometric models, revising and modifying LTs based on empirical data and 

discussions with practitioners, and adding features to the tool to respond to feedback from 

users. 
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Other efforts to go to scale with LT/LPs include Battista’s (2011), ETS’s CBAL (Bennett 

2011), and Petit’s (2011) OGAP system. Experience with these initial efforts to take 

LT/LPs to scale show promise in strengthening student learning and also emphasise the 

need to provide sufficient professional development, involve administrators in the planning 

and implementation, and communicate well with all parties. They also point to the need for 

ongoing processes of validation of assessment instruments and careful designs to tie 

properly to the larger assessment system (Shepard et al., 2018a).  

6.1. Types of Outcomes from LT/LP studies 

After reviewing the research on LT/LPs in mathematics, one might ask: Can one conclude 

that LT/LPs have a positive impact on student outcomes? Throughout this review answers 

have been presented, which are summarised and contrasted here. First, researchers 

conducting design studies demonstrate that students, indeed, do display the behaviours or 

ways of thinking associated with the constructs in the levels, so that the delineation of the 

trajectory with examples is itself an outcome of the research. A second question of 

outcomes might concern the prevalence of certain behaviours or ways of thinking 

associated with levels. Some research studies on LT/LPs employ cross-sectional 

cross-grade designs to answer such questions, which provides a second meaning of 

outcomes. Building these studies on previous design studies provides some insights in the 

frequencies of students’ positioning at different levels of performance, but such approaches 

are: a) only as valid as the measures they use, b) measure the frequency of outcomes within 

typical practice, and c) will lack descriptions of the “epistemic practices” and mechanisms 

describing or explaining students’ movement between levels. Nonetheless, the 

cross-sectional studies add to the body of the literature of outcomes in LT/LPs. A third 

means to describe the outcomes of LT/LPs is to validate the measure of LT/LPs by applying 

various measurement models to data from student performance on items designed to 

measure the constructs for the levels. Occasionally, measurement-based LT/LP studies 

involve correlations to other measures as a form of criterion-validity; more recently, 

validation is situated within a larger validation argument including some form of attention 

to consequential validity (Kane, 2013; Ketterlin-Geller et al., 2018; Carney and Smith, in 

press; Confrey, et al., 2019).  

A fourth answer to the question of what constitutes the outcomes of LT/LP research comes 

from the programme taken to scale. Few have reached this level of sophistication as these 

rest on the foundation of all of the other genres of LT/LP research. Furthermore, 

demonstrating effects at scale is challenging due to the complexity of the logic model 

presented in Figure 1. LT/LPs are deeply embedded in the teaching-learning setting, almost 

akin to the role of fascia in human anatomy, sheets of connective tissue that attach, separate, 

and stabilise muscles and internal organs, imperceptible to most people until they become 

inflexible or inflamed. One assumes that LT/LPs are operating to some degree all the time, 

but that by identifying and building them, by detailing their meaning and articulating the 

ways they can emerge and foster learning of the content, one can strengthen learning and 

assist students in moving along different interwoven pathways. Thus, work at scale requires 

this network of connective tissue to be activated more robustly, and studies at scale 

therefore require the whole system to light up, from engagement in curricular tasks, to more 

lively instructional exchanges, to fostering shared responsibilities and agency in formative 

assessment practices and subsequently to performance on student learning outcome 

measures. The approach demands systemic change, so demonstrating positive student 

learning outcomes will be a gradual process requiring widespread commitments and broad 

policy supports.  
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7.  What is Known about LT/LPs’ Impact on Educational Policy? 

Learning trajectories’ effects on educational policy are emerging from around the world. 

In large part, the success of these efforts will depend on the practical speed at which the 

research can be taken to scale, but much can also be learned as the approach moves to the 

national level. Primary examples are seen in the United States and Australia.  

In the United States, research on student learning, specifically LT/LPs, was reported as a 

major input to the development of the “Common Core State Standards in Mathematics" 

(CCSS-M). The CCSS-M writers acknowledged this in the introduction by writing,  

In addition, the “sequence of topics and performances” that is outlined in a body 

of mathematical standards must also respect what is known about how students 

learn. As Confrey (2007) points out, developing “sequenced obstacles and 

challenges for students...absent the insights about meaning that derive from a 

careful study of learning, would be unfortunate and unwise.” In recognition of this, 

the development of these Standards began with research-based learning 

progressions detailing what is known today about how students’ mathematical 

knowledge, skill, and understanding develop over time” (CCSSI 2010, p.4)  

Daro, Mosher, and Corcoran (2011) reflected on the relationship between standards and 

LT/LPs: 

Decisions about sequence in standards must balance the pull of three important 

dimensions of progression: cognitive development, mathematical coherence, and 

the pragmatics of instructional systems. (p. 41) 

Once CCSS-M was released, various scholars endeavoured to generate more detail on the 

relationship between the Standards and LT/LPs. Some critiqued the adequacy of the 

standards’ considerations of underlying LT/LPs (Smith & Gonulates, 2011), while others 

saw the standards as scaffolding that would benefit from a more complete articulation of 

LT/LPs (Confrey, Nguyen, Lee, et al., 2011; Common Core Standards Writing Team, 

2011-2018; Hess, 2018). From these efforts, some contrasts and clarifications can be drawn 

regarding the relationships between curriculum [standards] and LT/LPs. 

Firstly, standards represent negotiated agreements regarding when, during schooling, a 

topic should be learned. This tends to represent to most educators when a particular 

standard can be assessed. But if the ramp to understanding for that standard exceeds a year, 

then standards are silent on when to begin teaching that topic. LT/LPs can make this 

contribution.  

Secondly, an analysis of CCSS-M showed significant variation in the grain size of 

standards, so that using them to guide curriculum planning could be misleading. LT/LPs 

can mediate the problem of widely varying grain sizes of curriculum [standards]. LT/LPs, 

based on far more uniform grain size and their specific learner-centred emphasis on the 

way student understanding progresses and evolves, can fill in the needed detail for 

instructional planning.  

Thirdly, based on examples in CCSS-M, the construction of individual curriculum 

[standards] may be guided more by the logical categories of the disciplines than by the 

underlying learning issues. For example, the 6th grade Statistics and Probability standard 

6.SP.B.4 (“Display numerical data in plots on a number line, including dot plots, 
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histograms, and box plots”) seems to imply close relationship in the sequencing and 

cognitive demand of three disparate representations (dot plots, histograms and box plots) 

but in fact, learning research clearly demonstrates that box plots require very different 

student reasoning experience and sophistication about measures and distributions. Using 

this standard as a single instructional target would likely impede coherent instruction and 

student understanding.  

These analyses suggest that even when LT/LPs are considered in the preparation of 

curriculum [standards], the differences between the purposes of curriculum [standards] and 

the purposes of LT/LPs have to be considered. The relationship should be complementary, 

with the two components recognised as distinct. 

Australia is launching an even more ambitious effort to drive school improvement with 

LT/LPs. A recent Australian report, “Through Growth to Achievement: Report of the 

Review to Achieve Educational Excellence in Australian Schools," also known as the 

“Gonski Report” (Commonwealth of Australia, 2018), focuses on student learning as 

measured by growth (Priority One: “Deliver at least one year’s growth in learning for every 

student every year”). The report specifies a key role for learning progressions in achieving 

growth: 

To achieve this shift to growth, the Review Panel believes it is essential to move 

from a year-based curriculum to a curriculum expressed as learning progressions 

independent of year or age. Underpinning this, teachers must be given practical 

support by creating an online, formative assessment tool to help diagnose a 

student’s current level of knowledge, skill and understanding, to identify the next 

steps in learning to achieve the next stage in growth, and to track student progress 

over time against a typical development trajectory. (Executive Summary, p. X) 

Of the report’s 23 recommendations, learning progressions play a significant role in four 

(nos. 5, 6, 7, 11), including use in curriculum [standards], delivery, and formative 

assessment. Furthermore, 

All Australian education ministers agreed to collaborative action to develop 

national literacy and numeracy learning progressions in December 2015. Since 

then, learning progressions in literacy and numeracy have been developed for use 

in some states and territories. (p. 33)  

The Australian policy work is heavily informed by the work of the Australian Council for 

Educational Research Center for Global Education Monitoring (ACER-GEM). 

Representing ACER-GEM, Adams et al. (2018) seek to inform the development of the next 

round of international indicators of educational quality, central to goal 4 (Quality 

Education) of the United Nations 2030 Agenda for Sustainable Development (United 

Nations, 2015). They acknowledge that, in defining quality across various countries, an 

inherent tension has often risen between measuring quality based on a shared international 

test and risking excessive standardisation and influence by dominant cultures. They label 

the use of a standardised test a rigid but comparative solution on the one hand, and the 

approach to allow each locality to determine their own standards and definitions a flexible 

but idiographic solution, on the other. They believe it is possible to build a set of learning 

progressions that “describe a construct independently of any particular assessment tool 

used to measure it… Although different kinds of rulers may be used to measure length, 

these measurements are consistent because of the common understanding of length that 

informs their design.” They envision learning progressions as helping to provide countries 
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with empirically-based information about how LT/LPs can help “improve the quality of 

their curricula, teaching and learning, school resources, and assessment programs.” (p 3.)  

Adams et al. 2018 describe learning progressions as “a scale that defines the constructs that 

constitute educational progress in a particular domain (say, reading or mathematics).” 

(p. 2). They elaborate further:  

Learning progressions are directional, in that lower points on the scale represent 

less learning, and higher points represent more. Locations along the scale may be 

described numerically, as proficiency scores, or substantively, as proficiency 

descriptions. The proficiency descriptions make it clear what learners are expected 

to know and be able to do at designated levels on the scale, while the proficiency 

scores enable learning to be quantified against the scale. 

Defining a learning progression as a scale risks paying inadequate attention to the 

qualitative character of the levels of the underlying design-based LT/LPs, as discussed in 

Section 5.3. However, later in the brief the authors seem cognisant of the importance of 

emphasising the constructs in the levels, arguing that the greatest benefit of LT/LPs will be 

their focus on learning constructs rather than just on test scores (p. 4). They also call for an 

“extensive consultation with members of the international education community, including 

leaders in cross-national assessments, learning domain and curriculum experts, and 

national curriculum, assessment and education policy teams from the widest possible range 

of countries.” Including “learning domain and curriculum experts” in the list of consultants, 

if used robustly throughout the process of design, implementation and evaluation, can allow 

them to create a “trading zone” (section 5.4). 

These two country examples of policy initiatives related to LT/LPs are offered as 

illustrative exemplars of the use of LT/LPs and as indicators of their increasing importance.  
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8.  What are the Possible Future Roles of LT/LPs in the OECD’s 2030 Vision 

and Learning Framework? 

The OECD Education 2030 project offers a perspective on the knowledge, skills, attitudes 

and values needed by students in the coming dozen years, and strives to anticipate the 

instructional systems and professional educators’ capacities necessary to achieve that 

vision. The associated Learning Framework communicates an ambitious and urgent 

message. Children entering the school pipeline in 2018 will encounter fundamental shifts 

in the world environment, economy, and socio-cultural conditions and context, including 

scarcely imagined opportunities from new discoveries, and severe challenges from 

political/social upheavals and limitations in resources. The Project 2030’s learning 

framework acknowledges these changing conditions and anticipates the need to help 

students be ready to face them with a strong foundation in academic knowledge and 

dispositions of preparedness for change. Constantly exposed to a world that can be both 

inspiring and brutal, both encouraging and deceptive, our next generation of students must 

be resilient, persistent, self-aware, self-motivated, cooperative, and determined. In order to 

meet the challenges of this vision, educators are charged to design educational systems that 

are carefully and expertly built on the most up-to-date and informative insights about 

student understanding and learning. Furthermore, these systems must anticipate continued 

change: they must be designed for iterative improvement based on data and feedback from 

ongoing educational practice.  

Educational goals are typically expressed as lists of competencies and skills students must 

attain. As knowledge has accrued, those lists have ballooned, and the job of teaching has 

become far more difficult. Learners are saddled with unrealistic expectations that often fail 

to represent the reality of a world in which sources of information - and misinformation - 

abound, and search engines are ubiquitous and increasingly responsive to detailed queries. 

The “signal” in these complex systems - the knowledge that undergirds ideas with broad 

explanatory power - can be too easily lost in the fragmented snippets and twitter-based 

noise that distracts, cycles rapidly, and clamours for attention. In order for our students to 

achieve the vision of the OECD 2030 learning framework, we must focus on teaching them 

big ideas - ideas that connect many examples and support students in generating traction 

for explanations of a broad range of phenomena.  

Research on learning has revealed a number of domain-specific insights into how students 

learn big ideas as they progress from holding naive yet intuitive nascent ideas through 

levels of increasing sophistication. Descriptions of these patterns of evolving reasoning 

have been called “learning trajectories” or “learning progressions.” LT/LPs are not stage 

theories; they depend on providing students opportunities to undertaken challenging tasks, 

participate in active and engaged discussions, and make use of a variety of tools and 

representations. In a phrase: instruction plays a prominent role in the process. However, 

findings from relevant studies of learning typically lack synthesis and systematisation, and 

are often dispersed throughout the literature, so communicating them widely to educational 

practitioners is a serious challenge. 

A second theme that resonates between the Learning Framework and the research on 

LT/LPs is the recognition that robust learning requires an active and aware learner 

with a sense of agency. The argument for this is twofold. One, for student knowledge to 

become sophisticated and generative, the learner must her or himself become aware of the 
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process of continuously refining or reforming her or his own understanding. Students must 

become partners with teachers and with each other in recognising that knowledge is not 

simply accretion or assimilation, but rather involves episodes of transformation, evaluation 

and choice, or as Piaget explained, accommodation (Piaget, 1976). Secondly, the learner’s 

role involves the negotiation of meaning in social contexts involving purpose, interest, and 

responsibility. Deep learning over time requires active participation by students. Students 

must come to understand that knowing and learning are continual, ongoing processes, and 

that paths to expertise are accessible through careful and persistent study. A focus on 

learning trajectories/progressions initiates students’ participation in a process of systematic 

learning, not merely the distant hope of successfully obtaining an endpoint.  

Based on this review of the literature, it seems clear that scholars are synthesising many of 

the empirical insights into student learning into sequences of evidence about the landmarks 

and obstacles that students encounter as they move from naive to sophisticated 

understanding of big ideas. These sequences can have a variety of timescales - over days, 

weeks and months, not only over years. LT/LPs, especially at finer grain sizes, have the 

potential to be highly informative to teachers as they conduct instruction, because the 

LT/LPs describe both the emergence of students’ nascent ideas and paths to the horizon for 

which they may be headed.  

This paper began with a description of the teacher’s dilemma of addressing students’ 

learning needs vs. maintaining the grade-level expectations. By specifying the probabilistic 

paths of learning, the knowledge base connected with learning trajectories provides a 

possible direction for resolution. Instead of labelling “lagging students” as unaligned with 

the required standards (a deficit perspective) and losing track of them, students at differing 

levels of performance can be viewed in terms of what they are able to do on the related 

pathway and evaluated for their progress along the path. Further, a learning trajectory 

approach, in contrast with a purely developmental approach or stage theory, recognises the 

critical role for instruction and thus places the onus on the system - thus, there is a clear 

recognition that the student needs the educational system to afford her or him a particular 

instructional opportunity. Instead of merely “gap gazing” (Gutiérrez, 2008), the 

educational system should provide a set of diagnostic indicators that provide concrete 

instructional suggestions and resources.  

This proposed system will not be realised with another international test, though such tests 

may nonetheless retain value as summative comparative tools. What this calls for instead 

is the design of a dynamic feedback and learning system, implemented as part and parcel 

of instruction, with time intentionally and regularly devoted to acting on the results, in order 

to meet the individual needs of students. It requires a classroom assessment system with 

strong formative goals and practices. To be applicable to the broadest set of cases, that 

system will need to leverage a variety of technologies, including the means to assist 

teachers to work directly with samples of student work, and accessible tools and materials 

to address what is learned about student progress. 

8.1. Considerations 

As with most innovative ideas designed to address pressing and pernicious problems, it is 

important to be explicit and to hold persistently to certain understandings and principles 

about the key idea of LT/LP based on the results of this synthesis. To conclude, a set of 

considerations is proposed, following from the research syntheses presented in this article.  
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1. Hold to the core ideas about design-based LT/LPs. Each LT/LP (a) should be 

developed through the conduct of empirical qualitative studies of the evolution of 

student thinking over time, using rich tasks to elicit a broad range of student ideas 

(a methodology known as “design study”), and (b) should be accompanied by an 

explicit description of its underlying theoretical assumptions about constructivist 

learning as situated in socio-cultural contexts. It is important to recognise that 

LT/LPs derive from qualitative empirical studies of learners; they are not created 

merely by scholarly attempts to deconstruct mathematical ideas into their logical 

subparts. Logical deconstruction is a process that can inform the initial conjecture 

about an LT/LP, but should not be mistaken for an LT/LP. 

2. Launch a systematic international effort to develop learning trajectories for 

under-researched and emerging topics. Expect existing LT/LPs to evolve with 

the introduction of important emerging topics such as such as computational 

reasoning (Rich, Binkowski, Stickland & Franklin, 2018), new findings in the 

learning sciences, and new representations and contexts. 

3. Conduct cross-cultural research on LT/LPs to investigate their sensitivity to 

differences in context, language, representation, and instructional practice. 
Conceptualisation of LT/LPs involves student beliefs, experience, language, 

representations, and instructional experiences, so cultural differences in LT/LPs 

should be expected (Delgado & Morton, 2012). On the other hand, despite the fact 

that mathematics has evolved in diverse settings (times and places), it has produced 

many common ideas: a high degree of generality of ideas is likely to be seen in 

cross-cultural studies of LT/LPs. Thus, cross-cultural studies of LT/LPs should be 

undertaken with an open mind about possible commonalities and differences 

among contextual results. 

4. Distinguish the institutional/organisational role of curriculum [standards] 

from the empirical research-based character of LT/LPs, and carefully 

coordinate their use. Curriculum [standards], developed through negotiated 

agreements among experts in mathematics and mathematics education, provides 

organisational guidance about what to teach and when to teach it. LT/LPs, 

developed by learning scientists in mathematics, provide detailed, 

empirically-supported information regarding documented patterns in students’ 

learning of the content that is indicated by the curriculum [standards]. 

5. Document and/or measure student progress on LT/LPs, to provide valid, 

systematic, and timely feedback for improving ongoing instruction and 

learning. Varied degrees of technology can be leveraged to provide feedback on 

student progress along LT/LPs, ranging from means to share artefacts of student 

work (such as document cameras) to the use of dynamic digital learning and 

assessment systems that return analysed data in real time. In the international 

context, rapid progress requires careful consideration of available technological 

resources and the related human capacity for training and use. 

6. Distinguish a LT/LP from the measures of an LT/LP, and research both by 

applying appropriate theory and method. LT/LPs model how students think. 

They are also designed to anticipate and capture unexpected responses. Measures 

typically create scales or categories to measure or classify a students’ progress 

along an LT/LP. It is critical to ensure that measures are adequately grounded in 

relevant research on learning, i.e. in relation to design-based LT/LPs. Recognise 
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also that elements of the measurement process and its validation will contribute 

further theoretical and empirical insights into LT/LPs.  

7. Promote students’ active participation in monitoring their progress on LT/LPs 

to build self-regulation and agency. The precisely-specified levels of LT/LPs 

supports students’ participation in self-regulated learning (SRL) as they “generate, 

monitor, and adapt thoughts, behaviours, and feelings in pursuit of goals” (Fletcher, 

2018, p.2). Extending SRL to include student agency as “the intentional planned 

pursuit of goals and the initiation of appropriate action to reach an anticipated 

outcome” (Bandura, 2006, p. 2), teachers and students can participate together in 

formative assessment practices as a reciprocal process (Fletcher, 2018) designed to 

help students obtain the full range of goals of schooling: employment, informed 

citizenry, personal development, and competence (Klemenčič, 2015). 

8. Design and implement learning organisations and related technological 

systems around LT/LPs based on deep and ongoing collaborations among 

learning scientists, measurement specialists, and expert practitioners. These 

innovative organisational configurations would be designed to support adaptive and 

responsive LT/LP-based instruction at scale, to develop, test and revise new 

scientific discoveries about LT/LPs and their measures, and to inform the gradual 

revision of long-term curricula [standards] and materials. Success would be 

measured in the impact of the system on student learning outcomes.  

These eight considerations, drawn from a synthesis and interpretation of the existing 

literature on LT/LPs, are starting points for a rich discussion among member nations. 

Consideration 1 ensures an adequate foundation of LT/LPs in the learning sciences, and 

places students as the centre of the process. Considerations 2 and 3 advocate for a 

comprehensive treatment of LT/LPs, and recognise the importance of investigating them 

in diverse cultural settings.  

Consideration 4 clarifies the relationship between LT/LPs and curriculum [standards], and 

thus promotes reconsideration of the original dilemma, posed at the outset of the paper, 

between learning needs and grade-level expectations. Distinguishing LT/LPs and 

curriculum [standards] allows one to distinguish two different purposes of assessment: 

measuring an attainment of curriculum [standards] at grade level (compliance) 

vs. examining students’ progress along LT/LPs using artefacts of student work or measures 

of LT/LPs (diagnosis and guidance). The resolution of the dilemma rests in recognising the 

value of the two kinds of assessment targeting to different audiences (policy makers 

vs. school practitioners) and across different timelines (annual vs. proximal to actual 

instruction).  

Considerations 5 and 6 recognise the value of LT/LPs in providing systematic, efficient, 

and comprehensive feedback to students and teachers during instruction and advises on 

how to ensure that measurement of LT/LPs is grounded appropriately in the learning 

sciences. The importance of partnering with students in assessment practices for learning 

and to strengthen student agency is emphasised in consideration 7. Finally, consideration 

8 offers a vision for creating a dynamic digital learning and assessment system, one that 

uses LT/LPs and their measures to continuously leverage data on students’ specific needs, 

to improve instruction through effective collaborations among learning scientists, 

measurement specialists, and practitioners. The field of research on LT/LPs is still 

relatively young and emerging, but its potential to inform the next steps needed to improve 

and support learning by all students at scale is promising and worthwhile.
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Appendix A.  A List of Learning Trajectories/ Progressions in Mathematics by Strand, Topic, and Grade Level  

Content Strand Topic Grade Level Author(s) 

ALGEBRA AND 
FUNCTIONS Equations Middle school 

Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C. (2007). A longitudinal examination 
of middle school students' understanding of the equal sign and equivalent equations. Mathematical Thinking 
and Learning, 9(3), 221-247. 

Equality and 
Variable 

Middle school 
Arieli-Attali, M., Wylie, E. C., & Bauer, M. I. (2012). The use of three learning progressions in supporting 
formative assessment in middle school mathematics. Presented to the annual meeting of the American 
Educational Research Association, Vancouver, Canada. 

Functions 
Middle and High 

school 

Ayalon, M., Watson, A., & Lerman, S. (2015). Progression towards functions: Students’ performance on three 
tasks about variables from grades 7 to 12. International Journal of Science and Mathematics Education, 1–21. 
doi:10.1007 /s10763-014-9611-4 

Functions 
Elementary 

school 

Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in 
6-year- olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics 
Education, 46(5), 511–558. doi:10.5951/jresematheduc.46.5.0511 

Linear functions Middle school 
Chiu, M. M., Kessel, C., Moschkovich, J., & Muñoz-Nuñez, A. (2001). Learning to graph linear functions: A case 
study of conceptual change. Cognition and Instruction, 19(2), 215-252. 

Linear and 
Quadratic 
Functions 

Middle school 
Ellis, A. (2011). Algebra in the middle school: Developing functional relationships through quantitative 
reasoning. In J. Cai & E. Knuth (Eds.), Early Algebraization: A Global Dialogue from Multiple Perspectives 
(pp. 215-235). New York: Springer. 

Exponential 
Functions 

Middle school 

Ellis, A. B., Ozgur, Z., Kulow, T., Dogan, M. F., Williams, C., & Amidon, J. (2013). Correspondence and 
Covariation: Quantities changing together. In Martinez, M. & Castro Superfine, A (Eds.). (2013). Proceedings 
of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education. Chicago, IL: University of Illinois at Chicago. 

Ellis, A. B., Özgür, Z., Kulow, T., Williams, C. C., & Amidon, J. (2015). Quantifying exponential growth: Three 
conceptual shifts in coordinating multiplicative and additive growth. The Journal of Mathematical Behavior, 39, 
135–155. doi:10.1016/j.jmathb.2015.06.004 
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Linear Functions Middle school 

Graf, E. A., & Arieli-Attali, M. (2015). Designing and developing assessments of complex thinking in 
mathematics for the middle grades. Theory Into Practice, 54(3), 195-202. 

Arieli-Attali, M., Wylie, E. C., & Bauer, M. I. (2012). The use of three learning progressions in supporting 
formative assessment in middle school mathematics. Presented to the annual meeting of the American 
Educational Research Association, Vancouver, Canada. 

Quadratic 
Functions 

High school 
Graf, E. A., Fife, J. H., Howell, H., & Marquez, E. The Development of a Quadratic Functions Learning 
Progression and Associated Task Shells. ETS Research Report Series. 

Algebra 
Elementary and 
Middle school 

Ketterlin-Geller, L.R., Shivraj, P., Basaraba, D., & Schielack, J. (2018). Universal Screening for Algebra 
Readiness in Middle School: Why, What, and Does It Work? Investigations in Mathematics Learning. 

Trigonometry High school 

Moore, K. C. (2010). The role of quantitative reasoning in precalculus students learning central concepts of 
trigonometry. Arizona State University. 

Moore, K. C. (2012). Coherence, quantitative reasoning, and the trigonometry of students. Quantitative 
reasoning and mathematical modeling: A driver for STEM integrated education and teaching in context, 2, 75-
92. 

Linear Functions 
and Proportional 

Reasoning 
Middle school 

Pham, D., Bauer, M., Wylie, C., & Wells, C. (under review) Using cognitive diagnosis models to evaluate a 
learning progression theory. 

Early Algebra 
Elementary 

school 

Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Murphy Gardiner, A. (2017). A 
learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 
143-166. 

Beginning Algebra Middle school 
Tabach, M., Hershkowitz, R., & Dreyfus, T. (2012). Learning beginning algebra in a computer-intensive 
environment. ZDM 45(3) 377-391. 

Two-variable 
functions 

High school 
Weber, E., & Thompson, P. W. (2014). Students’ images of two- variable functions and their graphs. 
Educational Studies in Mathematics, 87, 67–85. doi:10.1007/s10649-014-9548-0 

Functions 
Middle 

school/High 
school 

Wilmot, D. B., Schoenfeld, A., Wilson, M., Champney, D., & Zahner, W., 2011. Validating a learning 
progression in mathematical functions for college readiness. Mathematical Thinking and Learning 13(4) 259-
291. 

Functions Middle school 
Yerushalmy, M. (1997). Designing representations: Reasoning about functions of two variables. Journal for 
Research in Mathematics Education, 431-466. 
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GEOMETRY 
Geometric figures 

Elementary 
school 

Clements, D. H., Wilson, D. C., & Sarama, J. (2004). Young children's composition of geometric figures: A 
learning trajectory. Mathematical Thinking and Learning, 6(2), 163-184. 

Space and 
Geometry 

Middle school 
Kobiela, M., & Lehrer, R. (2015). The codevelopment of mathematical concepts and the practice of defining. 
Journal for Research in Mathematics Education, 46(4), 423–454. doi:10.5951/jresematheduc.46.4.0423 

Space and 
Geometry 

Elementary 
school 

Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and 
geometry. In R. Lehrer & D. Chazan (Eds.), Designing Learning Environments for Developing Understanding 
of Geometry and Space (pp. 137-167). Lawrence Erlbaum Associates, Mahwah, NJ. 

Similarity 
Elementary 

school 
Lehrer, R., Strom, D., & Confrey, J. (2002). Grounding metaphors and inscriptional resonance: Children's 
emerging understanding of mathematical similarity. Cognition and Instruction, 20(3), 359-398. 

Similarity and 
Scaling 

Middle school 
Shah, M. J. (2018). Applying a Validity Argument Framework to Learning Trajectories on Middle Grades 
Geometric Similarity Using Learning Science and Psychometric Lenses. Unpublished dissertation.  

Spatial Reasoning 
Elementary and 
Middle school 

Siemon, D., Callingham, R., Day, L., Horne, M., Seah, R., Stephens, M., & Watson, J. (2018). From research 
to practice: The case of mathematical reasoning. MERGA 41: Annual conference of the Mathematics 
Education Research Group of Australasia. 

Siemon, D. & Callingham, R. (2018). Researching Mathematical Reasoning: Building Evidence-based 
Resources to Support Targeted Teaching in the Middle Years. In D. Siemon, T. Barkatsas & R. Seah (Eds.), 
Researching and using learning progressions (trajectories) in mathematics education. Leidan, the 

Netherlands: SENSE Publishers. 

MEASUREMENT 

Length 
Measurement 

Elementary 
school 

Barrett, J. E., & Clements, D. H. (2003). Quantifying path length: Fourth-grade children’s developing abstrac-
tions for linear measurement. Cognition and Instruction, 21(4), 475–520. doi:10.1207/s1532690xci2104_4 

Barrett, J. E., Clements, D. H., Klanderman, D., Pennisi, S. J.,& Polaki, M. V. (2006). Students’ coordination of 
geometric reasoning and measuring strategies on a fixed perimeter task: Developing mathematical 
understanding of linear measurement. Journal for Research in Mathematics Education, 37(3), 187–221. 

doi:10.2307/30035058 

Barrett, J. E., Sarama, J., Clements, D. H., Cullen, C., McCool, J., Witkowski-Rumsey, C., & Klanderman, D. 
(2012). Evaluating and improving a learning trajectory for linear measurement in elementary grades 2 and 3: 
A longitudinal study. Mathematical Thinking and Learning, 14(1), 28-54. 

Sarama, J., Clements, D. H., Barrett, J., Van Dine, D. W., & McDonel, J. S. (2011). Evaluation of a learning 
trajectory for length in the early years. ZDM, 43(5), 667. 

Szilágyi, J., Clements, D. H., & Sarama, J. (2013). Young children's understandings of length measurement: 
Evaluating a learning trajectory. Journal for Research in Mathematics Education, 44(3), 581-620. 

Length 
Elementary 

school 
Battista, M. T. (2006). Understanding the Development of Students' Thinking about Length. Teaching Children 
Mathematics 13(3), 140-146. 
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Length 
measurement 

Elementary 
school 

Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, 
and levels of sophistication. The Mathematics Enthusiast, 8(3), 507–570. 

Area and Volume 
Elementary 

school 

Battista, M. T., & Clements, D. H. (1996). Students’ understanding of three-dimensional rectangular arrays of 
cubes. Journal for Research in Mathematics Education, 27(3), 258–292. doi:10.2307/749365 

Battista, M. T., Clements, D. H., Arnoff, J., Battista, K., & Borrow, C. V. A. (1998). Students’ spatial structuring 
of 2D arrays of squares. Journal for Research in Mathematics Education, 29(5), 503–532. 
doi:10.2307/749731 

Battista, M. T. (1999). Fifth graders’ enumeration of cubes in 3D arrays: Conceptual progress in an inquiry-
based classroom. Journal for Research in Mathematics Education, 30(4), 417–448. doi:10.2307/749708 

Battista, M. T. (2004). Applying cognition-based assessment to elementary school students’ development of 
understanding of area and volume measurement. Mathematical Thinking and Learning, 6(2), 185–204. 
doi:10.1207 /s15327833mt10602_6 

Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, 
and levels of sophistication. The Mathematics Enthusiast, 8(3), 507–570. 

Area and 
Circumference of 

Circles 
Middle school 

Confrey, J. & Toutkoushian, E. (2018) Middle-grades learning trajectories within a digital learning system 
applied to the “Measurement of Characteristics of Circles.” In J. Bostic, E. Krupa, and J. Shih (Eds), 
Quantitative measures of mathematical knowledge: Researching instruments and perspectives. New York: 
Routledge. Refereed. 

Linear 
measurement 

Elementary 
school 

Gravemeijer, K., Bowers, J., & Stephan, M. (2003). A hypothetical learning trajectory on measurement and 
flexible arithmetic. In M. Stephan, J. Bowers, P. Cobb, & K. Gravemeijer (Eds.), Supporting students’ 
development of measurement conceptions: Analyzing students’ learning in social context (pp. 51–66). Journal 

for Research in Mathematics Education monograph series (Vol. 12). Reston, VA: National Council of 
Teachers of Mathematics. doi:10.2307/30037721 

Area measurement 
Elementary 

school 

Lai, E. R., Kobrin, J. L., DiCerbo, K. E., & Holland, L. R. (2017). Tracing the assessment triangle with learning 
progression-aligned assessments in mathematics. Measurement: Interdisciplinary Research and 
Perspectives, 15(3-4), 143-162. 10.1080/15366367.2017.1388113 

Angle Concepts 
Elementary and 
Middle school 

Mitchelmore, M. C., & White, P. (2000). Development of angle concepts by progressive abstraction and 
generalisation. Educational Studies in Mathematics, 41(3), 209–238. doi:10.1023/A:1003927811079 

Rectangular area 
measurement 

Elementary 
school 

Outhred, L. N. & Mitchelmore, M. C. (2000). Young children's intuitive understanding of rectangular area 
measurement. Journal for Research in Mathematics Education 31(2) 144-167. 
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NUMBER 
Proportional 
Reasoning 

Middle school 
Arieli-Attali, M., Wylie, E. C., & Bauer, M. I. (2012). The use of three learning progressions in supporting formative 
assessment in middle school mathematics. In annual meeting of the American Educational Research Association, 
Vancouver, Canada. 

Integers 
Elementary 

school 

Bishop, J. P., Lamb, L. L., Philipp, R. A., Whitacre, I., Schappelle, B. P., & Lewis, M. L. (2014). Obstacles and 
affordances for integer reasoning: An analysis of children's thinking and the history of mathematics. Journal for 
Research in Mathematics Education 45(1), 19-61. 

Proportional 
Reasoning 

Middle school 
Carney, M. B., Smith, E., Hughes, G. R., Brendefur, J. L., & Crawford, A. (2016). Influence of proportional number 
relationships on item accessibility and students’ strategies. Mathematics Education Research Journal, 28(4), 503-
522. 

Equipartitioning 
Elementary 

school 

Confrey, J., Maloney, A., Nguyen, K. H., Mojica, G., & Myers, M. (2009). Equipartitioning/splitting as a foundation of 
rational number reasoning using learning trajectories. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), 
Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 
1). Thessaloniki, Greece: PME. 

Confrey, J., & Maloney, A. (2010). The construction, refinement, and early validation of the equipartitioning learning 
trajectory. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Proceedings of the 9th International Conference of the 
Learning Sciences (Vol. 1, pp. 968–975). Chicago, IL: International Society of the Learning Sciences. 

Confrey, J., Maloney, A. P., Nguyen, K. H, & Rupp, A. A. (2014). Equipartitioning, a foundation for rational number 
reasonng: Elucidation of a learning trajectory. In A. P. Maloney, J. Confrey, & K. H. Nguyen (Eds.), Learning over 
time: Learning trajectories in mathematics education (pp. 61–96). Charlotte, NC: Information Age. 

Percents Middle school 

Confrey, J., McGowan, W., Shah, M, Belcher, M., Hennessey, M., and Maloney, A. (in press). Using digital 
diagnostic classroom assessments based on learning trajectories to drive instruction and deepen teacher 
knowledge. In D. Siemon, T. Barkatsas, and R. Seah (Eds.): Researching and using learning progressions 
(trajectories) in mathematics education. Rotterdam: Sense Publishers. International, Refereed. 

Percents Middle school 
Confrey, J., Toutkoushian, E. P., Shah, M. P. (in press). A validation argument from soup to nuts: Assessing 
progress on learning trajectories for middle school mathematics. Applied Measurement in Education. 

Comparing and 
ordering rational 

numbers 

Middle and High 
school, College  

Delgado, C., Stevens, S. Y., Shin, N., Yunker, M., & Krajcik, J. (2007). The development of students’ conceptions of 
size. In Annual Meeting of the National Association for Research in Science Teaching, April 2007. New Orleans, LA. 

Fractions 
Elementary 

school 

Hunt, J. H., Westenskow, A., Silva, J., & Welch-Ptak, J. (2016). Levels of participatory conception of fractional 
quantity along a purposefully sequenced series of equal sharing tasks: Stu’s trajectory. The Journal of Mathematical 
Behavior, 41, 45–67. doi:10.1016/j.jmathb.2015.11.004 

Rational Number 
Elementary and 
Middle school 

Ketterlin-Geller, L.R., Shivraj, P., Basaraba, D., & Yovanoff, P. (in press). Using mathematical learning progressions 
to design diagnostic assessments. Measurement: Interdisciplinary Research and Perspectives.  
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Multiplication 
Elementary 

school 

Petit, M. (2011). Learning trajectories and adaptive instruction meet the realities of practice. In P. Daro, F. A. Mosher, 
& T. Corcoran (Eds.), Learning trajectories in mathematics: A foundation for standards, curriculum, assessment, and 
instruction (Research Report No. RR-68; pp. 35–40). Consortium for Policy Research in Education. Retrieved from 

www.cpre.org/images/stories/cpre_pdfs/learning%20trajectories%20in%20math_ccii%20report.pdf.  

Percents Middle school 
Pöhler, B., & Prediger, S. (2015). Intertwining lexical and conceptual learning trajectories: A design research study 
on dual macro-scaffolding towards percentages. Eurasia Journal of Mathematics, Science & Technology Education, 
11(6), 1697–1722. 

Whole Numbers 
and Operations 

Elementary 
school 

Roy, G. J. (2008). Prospective teachers’ development of whole number concepts and operations during a classroom 
teaching experiment (Doctoral dissertation). Retrieved from 
http://etd.fcla.edu/CF/CFE0002398/Roy_George_J_200812_PhD.pdf   

Fractions 
Elementary 

school 
Saenz-Ludlow, A. (1994). Michael's fraction schemes. Journal for Research in Mathematics Education, 50-85. 

Representing 
Integers on a 
Number Line 

Elementary 
school 

Saxe, G. B., Earnest, D., Sitabkhan, Y., Haldar, L. C., Lewis, K. E., & Zheng, Y. (2010). Supporting generative 
thinking about integers on number lines in elementary mathematics. Cognition and Instruction, 28(4), 433–474. 

Representing 
Fractions on a 
Number Line 

Elementary and 
Middle school 

Saxe, G. B., Shaughnessy, M. M., Shannon, A., Langer-Osuna, J. M., Chinn, R., & Gearhart, M. (2007). Learning 
about fractions as points on a number line. In W. G. Martin, M. E. Strutchens, & P. C. Elliott, (Eds.), The Learning of 
Mathematics: 2007 Yearbook (pp. 221–237). Reston, VA: NCTM. 

Fractional 
Notation and 

Representation 

Elementary 
school 

Saxe, G. B., Taylor, E. V., McIntosh, C., & Gearhart, M. (2005). Representing fractions with standard notation: A 
developmental analysis. Journal for Research in Mathematics Education, 137-157. 

Addition and 
Multiplication 

Elementary 
school 

Sherin, B., & Fuson, K. (2005). Multiplication strategies and the appropriation of computational resources. Journal 
for Research in Mathematics Education, 36(4), 347–395. doi:10.2307/30035044 

Multiplicative 
Reasoning 

Elementary and 
Middle school 

Siemon, D. (2018). Knowing and Building on What Students Know – The Case of Multiplicative Thinking. In D. 
Siemon, T. Barkatsas & R. Seah (Eds.), Researching and using learning progressions (trajectories) in mathematics 
education. Leiden, the Netherlands: SENSE Publishers. 

Fractions 
Elementary 

school 
Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of 
the hypothetical learning trajectory. Mathematical thinking and learning, 6(2), 91-104. 

Decimals 
Elementary, 
Middle, and 
High school 

Stacey, K. and Steinle, V. (1999). A Longitudinal Study of Children's Thinking about decimals: A preliminary 
Analysis. In O. Zaslavsky (Ed.), Proceedings from 23rd Conference of the International Group for Psychology of 
Mathematics Education. Vol4. (pp 233-240) Haifa, Israel: PME 

http://www.cpre.org/images/stories/cpre_pdfs/learning%20trajectories%20in%20math_ccii%20report.pdf
http://etd.fcla.edu/CF/CFE0002398/Roy_George_J_200812_PhD.pdf
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Decimal Notation 
Elementary, 
Middle, and 
High school 

Stacey, K., & Steinle, V. (2006). A case of the inapplicability of the Rasch model: Mapping conceptual learning. 
Mathematics Education Research Journal, 18(2), 77–92. doi:10.1007 /BF03217437 

Proportional 
Reasoning 

Elementary 
school 

Steinthorsdottir, O. B., & Sriraman, B. (2009). Icelandic 5th grade girls’ developmental trajectories in proportional 
reasoning. Mathematics Education Research Journal, 21(1), 6–30. doi:10.1007/BF03217536 

Integer Addition 
and Subtraction 

Middle school 
Stephan, M., & Akyuz, D. (2012). A proposed instructional theory for integer addition and subtraction. Journal for 
Research in Mathematics Education, 43(4), 428–464. doi:10.5951 /jresematheduc.43.4.0428 

Number 
operations 

Elementary 
school 

Stephens, M., & Armanto, D. (2010). How to build powerful learning trajectories for relational thinking in the primary 
school years. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education: 
Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia. (pp. 523–
530). Fremantle, Australia: MERGA. Retrieved from http://files.eric.ed.gov /fulltext/ED520968.pdf 

Ratio 
Elementary 

school 
Streefland, L. (1984). Search for the roots of ratio: Some thoughts on the long term learning process (towards... a 
theory). Educational Studies in Mathematics, 15(4), 327-348. 

Negative 
Numbers 

Elementary 
school 

Streefland, L. (1996). Negative numbers: Reflections of a learning researcher. The Journal of Mathematical 
Behavior, 15(1), 57-77. 

Percents 
Elementary and 
Middle school 

Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example 
from a longitudinal trajectory on percentage. Educational Studies in Mathematics 54(1), 9-35. 

Van den Heuvel-Panhuizen, M., Middleton, J. A., & Streefland, L. (1995). Student-generated problems: Easy and 
difficult problems on percentage. For the Learning of Mathematics, 21-27. 

Fractions, decimals, 
percentages, 
proportions 

Elementary 
school 

Van Galen, F., Feijs, E., Figueiredo, N., Gravemeijer, K., van Herpen, E., & Keijzer, R. (2008). Fractions, 
Percentages, Decimals and Proportions: A Learning-Teaching Trajectory for Grade 4, 5 and 6. Sense Publishers, 
Rotterdam. 

Multiplicative 
Reasoning 

Middle school Venkat, H., & Mathews, C. (2018). Improving multiplicative reasoning in a context of low performance. ZDM, 1-14. 

Proportional 
Reasoning 

Middle school 
Vermont Mathematics Partnership’s Ongoing Assessment Project. (2013). OGAP proportional reasoning framework. 
Montpelier, VT: Author. Retrieved from http://margepetit.com/wp-
content/uploads/2015/04/OGAPProportionalFramework10.2013.pdf  

Fractions Middle school 
Vermont Mathematics Partnership’s Ongoing Assessment Project. (2014a). OGAP fraction framework. Montpelier, 
VT: Author. Retrieved from www.ogapmath.com/wp-content/uploads/2017/04/Fraction-Framework-Color-11x17-
01.16.14.pdf  

http://margepetit.com/wp-content/uploads/2015/04/OGAPProportionalFramework10.2013.pdf
http://margepetit.com/wp-content/uploads/2015/04/OGAPProportionalFramework10.2013.pdf
http://www.ogapmath.com/wp-content/uploads/2017/04/Fraction-Framework-Color-11x17-01.16.14.pdf
http://www.ogapmath.com/wp-content/uploads/2017/04/Fraction-Framework-Color-11x17-01.16.14.pdf
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Addition Middle school 
Vermont Mathematics Partnership’s Ongoing Assessment Project. (2014b). OGAP additive framework. Montpelier, 
VT: Author. Retrieved from www.ogapmath.com/wp-content/uploads/2017/04/framework_November2017.pdf  

Multiplication Middle school 

Vermont Mathematics Partnership’s Ongoing Assessment Project. (2014b). OGAP multiplicative framework. 
Montpelier, VT: Author. Retrieved from www.ogapmath.com/wp-content/uploads/2017/04/OGAP-Multiplicative-
Framework-Color-1.11.2017.pdf 

Ebby, C., Sirinides, P., & Supovitz, J. (2017). Developing measures of teacher and student understanding in relation 
to learning trajectories. Paper presented at the 2017 Annual Meeting of the American Educational Research 
Association; San Antonio, TX. 

Rational number 
reasoning 

Middle school 
Wright, V. (2014). Towards a hypothetical learning trajectory for rational number. Mathematics Education Research 
Journal 26(3), 635-657. 

 

STATISTICS AND 
PROBABILITY 

Reasoning about 
variability 

Middle school 
Ben-Zvi, D. (2004). Reasoning about variability in comparing distributions. Statistics Education Research 
Journal 3(2) 42-63. 

Describing 
distributions 

Elementary 
school 

Leavy, A. M., & Middleton, J. A. (2011). Elementary and middle grade students’ constructions of typicality. 
The Journal of Mathematical Behavior, 30(3), 235-254. 

Statistical 
reasoning 

Middle school 

Lehrer, R., Kim, M. J., Ayers, E., & Wilson, M. (2014). Toward establishing a learning progression to support 
the development of statistical reasoning. Learning over time: Learning trajectories in mathematics education. 
Charlotte, NC: Information Age. 

Shinohara, M., & Lehrer, R. (2018). Becoming Statistical. Annual Meeting of the American Education 
Research Association. New York, NY. April 13.. 

Inference 
Elementary 

school 
Makar, K. & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics 
Education Research Journal, 8(1), 82-105. 

Early statistical 
reasoning 

Middle school 
McGatha, M., Cobb, P., & McClain, K. (2002). An analysis of students’ initial statistical understandings: 
Developing a conjectured learning trajectory. The Journal of Mathematical Behavior, 21(3), 339-355. 

Sampling Middle school 
Meletiou-Mavrotheris, M., & Paparistodemou, E. (2015). Developing students’ reasoning about samples and 
sampling in the context of informal inferences. Educational Studies in Mathematics, 88(3), 385–404. 

Probability Middle school 
Watson, J. M., & Kelly, B. A. (2009). Development of student understanding of outcomes involving two or 
more dice. International Journal of Science and Mathematics Education, 7(1), 25-54. 

Inference Middle school 
Zieffler, A., Garfield, J., Delmas, R., & Reading, C. (2008). A framework to support research on informal 
inferential reasoning. Statistics Education Research Journal 7(2), 40-58. 

 

http://www.ogapmath.com/wp-content/uploads/2017/04/framework_November2017.pdf
http://www.ogapmath.com/wp-content/uploads/2017/04/OGAP-Multiplicative-Framework-Color-1.11.2017.pdf
http://www.ogapmath.com/wp-content/uploads/2017/04/OGAP-Multiplicative-Framework-Color-1.11.2017.pdf
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Appendix B.  Theoretical Publications and Studies of Applications of 

LT/LPs in Mathematics 

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. 

Mathematical Thinking and Learning, 6(2), 81–89. doi:10.1207/s15327833mt10602_1 

Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning 

trajectories approach. New York, NY: Routledge. 

Clements, D. H., & Sarama, J. (2014). Learning trajectories: Foundations for effective, 

research-based education. In A. P. Maloney, J. Confrey, & K. H. Nguyen (Eds.), Learning 

over time: Learning trajectories in mathematics education(pp. 1–30). Charlotte, NC: 

Information Age. 

Common Core Standards Writing Team. (2013a). A progression of the Common Core 

State Standards in Mathematics (draft). Tucson, AZ: Institute for Mathematics and 

Education, University of Arizona. Retrieved from http://commoncoretools.me/wp-

content/uploads/2011/08/ccss_progression_nf_35_2013_09_19.pdf    

Confrey, J., Gianopulos, G., McGowan, W., Shah, M., & Belcher, M. (2017). Scaffolding 

learner-centered curricular coherence using learning maps and diagnostic assessments 

designed around mathematics learning trajectories. ZDM, , 1-18. 10.1007/s11858-017-

0869-1 

Confrey, J., Maloney, A. P., & Corley, A. K. (2014). Learning trajectories: A framework 

for connecting standards with curriculum. ZDM—The International Journal on 

Mathematics Education, 46(5), 719–733. doi:10.1007/s11858-014-0598-7 

Confrey, J., Maloney, A. P., & Nguyen, K. H. (2014). Learning trajectories in 

mathematics. In A. P. Maloney, J. Confrey, & K. H. Nguyen (Eds.), Learning over time: 

Learning trajectories in mathematics education (pp. xi–xxi). Charlotte, NC: Information 

Age. 

Delgado, C., & Morton, K.* (2012). Learning progressions, learning trajectories, and 

equity. In van Aalst, J., Thompson, K., Jacobson, M. J., & Reimann, P. (Eds.) (2012). The 

future of learning: Proceedings of the 10th International Conference of the Learning 

Sciences (ICLS 2012) – Volume 1, Full papers, pp. 204-211. International Society of the 

Learning Sciences: Sydney, NSW, Australia. 

Empson, S. (2011). On the idea of learning trajectories: Promises and pitfalls. The 

Mathematics Enthusiast, 8(3), 571–596. 

Heritage, M. (2008). Learning progressions: Supporting instruction and formative 

assessment. Washington, DC: The Council of Chief State School Officers. 

Heritage, M. (2009). The case for learning progressions. San Francisco, CA: Stupski 

Foundation 

Hess, K. (2008). Developing and using learning progressions as a schema for measuring 

progress. Retrieved from http://www.nciea.org/publications/CCSS02_KH08.pdf  

Leahy, S., & Wiliam, D. (2011). Devising learning progressions assessment. In Annual 

Meeting of the American Educational Research Association, New Orleans, LA. 
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Lehrer, R., Jones, R. S., Pfaff, E., & Shinohara, M. (2017). Data Modeling Supports the 

Development of Statistical Reasoning. Final report submitted to the Institute of Education 

Sciences, U.S. Department of Education. Washington, DC 

Maloney, A. P., Confrey, J., & Nguyen, K. H. (Eds.). (2014). Learning over time: Learning 

trajectories in mathematics education. IAP. 

Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: 

Learning trajectories for young children. New York: NY: Routledge. 

Sarama, J., & Clements, D. H. (2013). Lessons learned in the implementation of the 

TRIAD scale-up model: Teaching early mathematics with trajectories and technologies. 

In T. Halle, A. J. R. Metz & I. Martinez-Beck (Eds.), Applying implementation science in 

early childhood programs and systems (pp. 173-191). Baltimore, MD: Paul H. Brookes. 

Sarama, J., Clements, D. H., Starkey, P., Klein, A., & Wakeley, A. (2008). Scaling up the 

implementation of a pre-kindergarten mathematics curriculum: Teaching for 

understanding with trajectories and technologies. Journal of Research on Educational 

Effectiveness, 1(2), 89-119. 10.1080/19345740801941332 Retrieved from 

http://dx.doi.org/10.1080/19345740801941332 

Sarama, J., Clements, D. H., Wolfe, C. B., & Spitler, M. E. (2016). Professional 

development in early mathematics: Effects of an intervention based on learning trajectories 

on teachers’ practices. Nordic Studies in Mathematics Education, 21(4), 29-55. 

School Curriculum and Assessment Authority. (1994). Mathematics in the national 

curriculum. 

Seago, N., Jacobs, J., & Driscoll, M. (2010). Transforming middle school geometry: 

Designing professional development materials that support the teaching and learning of 

similarity. Middle Grades Research Journal, 5(4), 199-211. 

Seago, N., Jacobs, J., Driscoll, M., Nikula, J., Matassa, M., & Callahan, P. (2013). 

Developing teachers' knowledge of a transformations-based approach to geometric 

similarity. Mathematics Teacher Educator, 2(1), 74-85. 10.5951/mathteaceduc.2.1.0074 

Siemon, D. (2017). Developing Learning Progressions to Support Mathematical 

Reasoning in the Middle Years: Introducing the Reframing Mathematical Futures II 

Project. In The 40th Annual Conference of the Mathematics Education Research Group of 

Australasia (pp. 651-654). The Mathematics Education Research Group of Australasia Inc. 

Simon, M. A., Saldanha, L., McClintock, E., Akar, G. K., Watanabe, T., & Zembat, I. O. 

(2010). A developing approach to studying students’ learning through their mathematical 

activity. Cognition and Instruction, 28(1), 70–112. doi:10.1080/07370000903430566 

Suh, J., & Seshaiyer, P. (2015). Examining teachers’ understanding of the mathematical 

learning progression through vertical articulation during Lesson Study. Journal of 

Mathematics Teacher Education, 18(3), 207-229. 

Sztajn, P., Confrey, J., Wilson, P. H., & Edgington, C. (2012). Learning trajectory based 

instruction toward a theory of teaching. Educational Researcher, 41(5), 147-156. 

Weber, E., & Lockwood, E. (2014). The duality between ways of thinking and ways of 

understanding: Implications for learning trajectories in mathematics education. The 

Journal of Mathematical Behavior, 35, 44–57. doi:10.1016 /j.jmathb.2014.05.002 
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Weber, E., Walkington, C., & McGalliard, W. (2015), Expanding notions of “learning 

trajectories” in mathematics education. Mathematical Thinking and Learning, 17(4), 253–

272. doi:10.1080/10986065.2015.1083836  

Wiig, C., Silseth, K., & Erstad, O. (2018). Creating intercontextuality in students learning 

trajectories. Opportunities and difficulties. Language & Education: An International 

Journal, 32(1), 43-59. 

Wilson, P. H. (2009). Teachers’ uses of a learning trajectory for equipartitioning (Doctoral 

dissertation). Retrieved from http://repository.lib.ncsu.edu/ir/handle/1840.16/2994  

Wilson, P. H., Mojica, G. F., & Confrey, J. (2013). Learning trajectories in teacher 

education: Supporting teachers’ understandings of students’ mathematical thinking. The 

Journal of Mathematical Behavior, 32(2), 103-121. 

Wilson, P. H., Sztajn, P., Edgington, C., & Confrey, J. (2014). Teachers’ use of their 

mathematical knowledge for teaching in learning a mathematics learning trajectory. 

Journal of Mathematics Teacher Education, 17(2), 149-175. 10.1007/s10857-013-9256-1 

Retrieved from https://doi.org/10.1007/s10857-013-9256-1 

Wiser, M., Smith, C. L., & Doubler, S. (2012). Learning progressions as tools for 

curriculum development. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions 

in science: Current challenges and future directions (pp. 359–403). Rotterdam, The 

Netherlands: Sense. 

Yettick, H. (2015). Learning progressions: Maps to personalized teaching. Education 

Week, 35(12), S18–S19. Retrieved from 

www.edweek.org/ew/articles/2015/11/11/learning-progressions-maps-to-personalized-

teaching.html     
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