Willkommen Welcome Bienvenue

Understanding Side-Chain Fluorinated Polymers and Their Life Cycle

Zhanyun Wang

Background, Motivation and Scope

- PFASs can be divided into non-polymers and polymers.
 - Attention has primarily focused on non-polymeric PFASs.
 - It is equally important to understand polymeric PFASs, including side-chain fluorinated polymers (SCFPs), fluoropolymers and perfluoropolyethers.
- A first synthesis report, focusing on the life cycle of SCFPs
 - defined as polymers with a non-fluorinated polymer backbone and with PFAS moieties on the side chain(s).

Report Structure

- Chapter 2. Identities of SCFPs on the Global Market
- Chapters 3–6 The life cycle of various SCFPs
 - Production and uses
 - Presence of other PFASs in the commercial formulations
 - Degradation of SCFPs
 - Environmental releases of SCFPs and other PFASs
 - Summary and options for a way forward
- Chapter 7. Conclusions
- Annex: five spreadsheets on substance identities, use information, PFASimpurity studies, degradation studies and SCFP release

SCFPs on the Market

Technology & Society Laboratory

- Table S1: A non-exhaustive list of 103 SCFPs and 42 PFAS monomers
 - In most cases, the generic chemical structure(s) can be identified

B. an example of fluorotelomer-based urethane* SCFPs CASRN 357624-15-8

* The term "urethane" here is a simplification of polyurethanes and related chemistry (e.g., polyallophanates and polyisocyanurates).

SCFPs on the Market

Technology & Society Laboratory

C. an example of PACF-based** oxetane SCFPs CASRN 449177-99-5

E. an example of PACF-based silicone SCFPs derived from CASRN 154380-34-4

D. an example of PASF-based ethoxylate SCFPs CASRN 68298-79-3

F. an example of PFPE-based silicone SCFPs derived from CASRN 475633-38-3

** In this example, the fluorinated oxetane monomer is derived from CF₃CF₂CH₂OH, which is derived from CF₃CF₂COOH

SCFPs on the Market

Technology & Society Laboratory

Additional structural details are available in limited cases.

References	Russell et al. (2008)	Russell et al. (2010) Fluorotelomer-based urethane	
SCFP type	Fluorotelomer-based acrylate polymer (Figure 2.1 A)		
Molecular weight	M _n = 40 000 Daltons*	M _n or M _w = 3 500 Daltons**	
Fluorine content	10.095 weight%	ro weignt%	
SCFP weight% in the formulation	23–24%	23%	
SCFP particle size in the formulation	100–300 nm	100–300 nm	

■ The chemical identities, including molecular weight and PFAS moiety content, can vary considerably across different types of SCFPs and across different SCFPs within the same type → Possibly different behavior

SCFPs on the Market: Critical Data Gaps

- In multiple cases, the generic chemical structures or its monomer(s)
 cannot be identified, due to
 - Confidential business information
 - Only the trade name were assigned to the CASRNs

SCFPs on the Market: Critical Data Gaps

Technology & Society Laboratory

- In multiple cases, the generic chemical structures or its monomer(s)
 cannot be identified, due to
 - Confidential business information
 - Only the trade name were assigned to the CASRNs
 - The assigned CAS name is ambiguous

○ CAS Registry Number: 328389-91-9

Propanoic acid, 3-hydroxy-2-(hydroxymethyl)-2-methyl-, polymers with 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane and **reduced Me esters of reduced polymd. oxidized tetrafluoroethylene**, compds. with triethylamine

SCFPs on the Market: Critical Data Gaps

- In multiple cases, the generic chemical structures or its monomer(s)
 cannot be identified, due to
 - Confidential business information
 - Only the trade name were assigned to the CASRNs
 - The assigned CAS name is ambiguous
- The same CASRN and CAS name can be used for different SCFPs with the same generic chemical structures, but different structural details such as molecular-weight ranges and distribution ...

Acrylate and Urethane SCFPs: Production

Technology & Society Laboratory

$$\begin{pmatrix} CF_2 \\ CH_2 \\ C \end{pmatrix}_2 \qquad \begin{pmatrix} CH_2 \\ CH_2 \\ C \end{pmatrix}_2 \qquad \begin{pmatrix} CH_2 \\ CH_2 \\ CH_2 \end{pmatrix}_3 \qquad \begin{pmatrix} CH_2 \\ CH_2 \\ CH_2 \end{pmatrix}_4 \qquad \begin{pmatrix} CH_2 \\ CH_2 \\ CH_2 \end{pmatrix}_5 \qquad \begin{pmatrix} CH_2 \\ CH_2 \\ CH_2 \end{pmatrix}_5$$

 $\textbf{B. an example of fluorotelomer-based } \textbf{urethane*} \ \textbf{SCFPs}$

CASRN 357624-15-8

Acrylate and Urethane SCFPs: Production

- Large production in the past
 - In 2000, up to about 50% of POSF used for acrylate and urethane SCFPs vs. ca. 3% of POSF for producing fire-fighting foams
 - In 2006, 80% of the n:2 fluorotelomers manufactured (including all SCFPs)
- Now, a shift to shorter-chain PFASs
 - Limited information is available on the volumes, but likely still significant
 - However, some long-chain SCFPs, CASRNs 68298-62-4, 68867-62-9 (POSF-based), 142636-88-2 and 70969-47-0 (fluorotelomer-based), were still used in some Nordic countries at least until 2020.

Acrylate and Urethane SCFPs: Use

- Surface treatment, e.g.,
 - Fabrics, textiles and apparel articles
 - Food-contact paper and paperboard
- Fluorosurfactants, e.g.,
 - Fire-fighting foam formulations
- Other applications areas (likely also as fluorosurfactants)
 - Paints, laquers and varnishes; reprographic agents; adhesives and binding agents; printing inks; and glossing agents

Presence of other PFASs in Urethane SCFPs

→ The levels vary considerably across formulations, up to about 5% of the solids.

Presence of other PFASs in Acrylate SCFPs

→ No mass balance studies of the fate and distribution of these non-polymeric PFASs during application of commercial SCFPs are identified.

Degradation of Acrylate and Urethane SCFPs

an example of fluorotelomer acrylate polymers

conceptual chemical composition of a fluorotelomer urethane polymer

Acrylate and Urethane SCFPs: Releases

- Significant amounts of SCFPs and other PFASs have been and are released along the life cycle of SCFPs
 - During the application of commercial formulations and the processing of treated materials into articles
 - → 3M, 1999: 10–25% loss, in the case of fibre, textile and leather
 - During the use and disposal of treated articles
- Target urethane SCFP compositions measured in lake sediment, soil samples, sludge from WWTPs and landfill leachates.
- → They act as long-term sources of perfluoroalkyl acids in the environment.

Life Cycle of Oxetane SCFPs

Technology & Society Laboratory

C. an example of PACF-based** oxetane SCFPs

CASRN 449177-99-5

Life Cycle of Oxetane SCFPs

Technology & Society Laboratory

- Production: little is known in the public domain ...
- **Uses:** Primarily as wetting, flow and leveling agents in coatings, electronic applications, floor finish, and inks; as reactive intermediates for solvent-based coatings, adhesives, electronics and lubricants
- **Presence of other PFASs:** little is known, but at least unreacted raw materials and intermediates + reaction by-products (cyclic oligomers)
- Degradability: No studies identified and hard to predict ...

C. an example of PACF-based** oxetane SCFPs

CASRN 449177-99-5

Life Cycle of Oxetane SCFPs

- Production: little is known in the public domain ...
- **Uses:** Primarily as wetting, flow and leveling agents in coatings, electronic applications, floor finish, and inks; as reactive intermediates for solvent-based coatings, adhesives, electronics and lubricants
- Presence of other PFASs: little is known, but at least unreacted raw materials and intermediates + reaction by-products (cyclic oligomers)
- Degradability: No studies identified and hard to predict ...
- **Environmental releases:** No studies identified, but likely occurring

Life Cycle of Silicone SCFPs

Technology & Society Laboratory

Production: limited data are publicly available, but significant

Life Cycle of Silicone SCFPs

- Production: limited data are publicly available, but significant
- Uses: surface protection (e.g., nylon-cotton fabrics, leather, stone, glass, ceramics, concrete structures, metals, wood); medical applications (e.g., tubing, treatment of eye diseases; PDMS implants); personal care products (e.g., cosmetic foundations, hand lotions); antifoams (e.g., in the petroleum industry, in diesel fuels); lubricants (e.g., for pumps and compressors in harsh chemical service); rubber applications (e.g., o-rings for fuel lines)
- **Presence of other PFASs:** little is known, but at least unreacted raw materials and intermediates + reaction by-products (cyclic oligomers)

Life Cycle of Silicone SCFPs

Degradability: poor thermal stability and tend to degrade when exposed to high temperature (e.g., in the case of PMTFPS, over 200 °C, with cyclic siloxanes such as D₃F and D₄F as the primary products); photodegradability; oxidation via TOP assay

Environmental releases:

- Elevated levels of D_3F and D_4F detected in surface water, sediments, landfill leachates, WWTP effluents, sludge
- No measurements of other ones identified

Life Cycle of Ethoxylate SCFPs

Technology & Society Laboratory

D. an example of PASF-based ethoxylate SCFPs CASRN 68298-79-3

Life Cycle of Ethoxylate SCFPs

- Production: little is known in the public domain, but likely significant ...
- Uses: surfactants/surface treatment in industrial processing, commercial applications and consumer uses
 - e.g., caulks, paints, coatings, adhesives, ink, oil and gas drilling, soap and cleaning products, automotive care products, lubricants, food packaging, fire-fighting foam agents, anti-fog sprays and cloth
- Presence of other PFASs: little is known, but at least unreacted raw materials and intermediates (up to 4%)
- Degradability: biodegradable (though possibly rather slow)
- **Environmental releases:** detected in the leachates of a disposal facility

Take-Home Messages

- A wide range of SCFPs have been produced and used in many different applications, with at least some at high volumes (up to 10'000s tonnes/year).
- Many non-polymeric PFASs may be present in SCFPs, sometimes at % levels.
- During the life cycle of SCFPs and related products, substantial amounts of SCFPs and associated non-polymeric PFASs may have been released.
- Degradtion of SCFPs to form non-polymeric PFASs, including PFCAs and/or PFSAs, in the environmental and biota can be well expected.
- Many SCFPs are acting as long-term significant sources to the global burden of non-polymeric PFASs.
- Concerted action is needed to address SCFPs, while filling data gaps!

Acknowledgements

- The report was prepared under the framework of the OECD/UNEP Global PFC Group, with inputs from the Group members and financial support of the United Kingdom.
- The report was also reviewed and endorsed by the Working Party on Risk Management and is published under the responsibility of the OECD Chemicals and Biotechnology Committee.

https://oe.cd/4Nz

Thank You for Your Attention!

Technology & Society Laboratory

Your feedback is most welcome!

SDA Theory | F-Specific Essential Basis for PFAS

Takeshi Hasegawa

ICR, Kyoto University, Japan

- Talk for: OECD Webinar for "Advances in Understanding PFAS"
- Date and Time: 13:25 ~ 13:45 (GMT+1) on Tuesday, December 6, 2022

SDA for Current Problems of PFAS

PFAS-Specific Properties | "Hydrocarbon chemistry" does not work at all

Molecular interaction

High mpStrong interactions

Weak adhesion between surfaces

Adhesive between stretched tapes

Fluorous

w/o repellency
Why low surf energy?

C8Critical length

Insoluble in non-F solvents

Molecular water adsorbs on stretched tape

Vib Spectroscopy

Very **strong IR** absorption

νCF: Raman is lower than IR **by 400 cm**⁻¹

 ν CF: **Higher shift** on R_f length

Surface-mode active on thin films

Optical property

Low **permittivity**

Macroscopic vs Single-Molecular Characters

Hydrocarbon

hydrophobic CH₂ CH₂

Octanoic acid

This step can conveniently be skipped for rough estimation

- Water insoluble
- Oil soluble

SDA | Theorizing Molecular Aggregation of PFAS

12:37:59

Molecular interactive forces | Origin of molecular assemblies

- 1. Ionic interaction (~250 kJ mol⁻¹)
- 2. Hydrogen bonding (~25 kJ mol⁻¹)

- J. N. Israelachvili in *Intermolecular and Surface Forces*, *2nd Ed.*, Academic Press, London, **1991**, pp. 83–136.
- P. Atkins, J. de Paula in *Physical Chemistry*, *8th Ed.*, Oxford University Press, Oxford, **2006**, pp. 629–651.

3. van der Waals forces (~2 kJ mol-1)

F. London Trans. Faraday Soc. 33, 8 (1937).

HC

i) Dispersion effect

$$\overline{U}_{\text{dispersion}} = -\frac{3}{4R^6} h v_0 \alpha^2$$

Molecular polarizability: α is small for F

$$\overline{U}_{\text{induction}} = -\frac{2}{R^6} \mu^2 \alpha$$

iii) Orientation effect

$$\overline{U}_{\text{orientation}} = -\frac{1}{3R^6} \frac{\mu^4}{k_B T} \left(1 + 3\cos^2 \theta \right)$$

Dipole moment: μ is large for F

F: weak dispersion effect, but large orientation effect

Halogen molecules:

- Dumbbell-shaped homonuclear diatomic molecule: No dipole → Dispersion
- Molecular polarizability, α , depends on flexibility of electron cloud
- Flexibility is larger for a larger atom
- α is larger on going down in periodic table

$$\overline{U}_{\text{dispersion}} = -\frac{3}{4R^6} h v_0 \alpha^2$$

Dipole- vs Dispersion-effects

F. London *Trans. Faraday. Soc.* **33**, 8 (1937).

$$\bar{U} = -\frac{1}{R^6} \left(\frac{2}{3} \frac{\mu_{\rm I}^2 \mu_{\rm II}^2}{kT} + \mu_{\rm I}^2 \alpha_{\rm II} + \mu_{\rm II}^2 \alpha_{\rm I} + \frac{3h}{2} \alpha_{\rm I} \alpha_{\rm II} \frac{\nu_{\rm I} \nu_{\rm II}}{\nu_{\rm I} + \nu_{\rm II}} \right)$$

TABLE III .- THE THREE CONSTITUENTS OF THE VAN DER WAALS' FORCES.

	1	1	1	_ Keesom	— Debye –	London -
	۴. 10 ¹⁸ . Minkin	α. 10 ²⁴ . Miller	hνο (Volts). NIST	Orientation Effect $\frac{2}{3} \frac{\mu^4}{k^2 93} \cdot 10^{60}$ [erg cm. ⁶]. (6.96%)	Induction Effect $2\mu^2\alpha$. 10 ⁶⁰ [erg cm. ⁶]. (3.44%)	Dispersion Effect $\frac{1}{2}\alpha^2h\nu_0$. 10^{60} [erg cm. 6].
C-H CO . HI . HBr . HCl . NH ₃ H ₂ O .	0.40 0·12 0·38 0·78 1·03 1·5 1·84	0.652 1·99 5·4 3·58 2·63 2·21 1·48	10.64 14·3 12 13·3 13·7 16 18	0.422 0.0034 0.35 6.2 18.6 84 190	0.209 0.057 1.68 4.05 5.4 10	5.43 67·5 382 176 105 93 47
C-F	1.39	0.555	9.11	61.5 (91.8%)	2.14 (3.20%)	3.37 (5.03%)

at 293 K

Polarizability contribution

Chem. Phys. Lett. **626**, 64 (2015).

Dipoles-Interaction and a helical structure

Stratified Dipole-Arrays (**SDA**) Theory

of material

On macroscopic scale, μ looks small Ori. effect: weak Molecular polarizability, α , is intrinsically small Disp. effect: weak

 $\varepsilon_0 \varepsilon_{\mathrm{r}} E = \varepsilon_0 E + P$ permittivity

Not aggregate

'Molecular dipoles' are faced to outside

'Single Molecular

- T. Hasegawa et al. *ChemPlusChem* **79**, 1421 (2014).
- T. Hasegawa Chem. Rec. 10, 903 (2017).

SDA comprehensively explains various PFAS-specific properties

Key: Single and Macro must strictly be discriminated

Model compounds examining the SDA theory

HOOC
$$m = 3$$

$$F = F$$

$$F = F$$
HOOC
$$m = 5$$

$$F = F$$

$$F = F$$

Both ends would interact with water surface

Boundary length

Expected to generate **2D-aggregate**

Monolayer study for confirming spontaneous 2D aggregation

- Monolayers of m = 9 and **7** are intrinsically different from those of m = 5 and **3**.
- The surface area of the lowest limit of the linear parts of m = 9 and 7 show a beautiful quantitative correlation.

$$0.286 \times \frac{2}{\sqrt{3}} = 0.330$$
hexagonal tetragona

Note: Definition of m in SDA disregards terminal CF_3

- $m \ge 7 (n \ge 8)$: Self-aggregation
- $m \le 6$ ($n \le 7$): Single dipolar character

Definition in SDA framework

Conventional: C8 or n = 8

$$m = 7$$
 PFOS F_3C CF_2 CF_2 CF_2 CF_2 CF_2 CF_2 SO_3H BAFs = 3,548 (fish)

$$m = 6$$
 PFOA F_3C CF_2 C

Environ. Toxicol. Chem. **2021**, 40, 1530.

PFAS: Molecular **aggregation** is driven by $(CF_2)_m$

Stretched PTFE tape | Single-Molecular Character Appears

(a) SDA aggregation

(b) **Disaggregated** by stretch

Using water **droplet**: No change (**macroscopic**)

PTFE tape	Contact Angle (P≈0)
As is	~123°±3°
Stretched	~124°±6°

12:38:00

As predicted by SDA theory:

Molecular water adsorbs on stretched PTFE by single-molecular character

12:38:00

¹H NMR spectra of water desorption **on heating**

Single R_f Chain is NOT hydrophobic

12:38:00

Hydrophilic / Hydrophobic -> Careful Reconsideration using SDA is Needed

Conventional Concept

C-F	Hydrophobic
С-Н	Hydrophobic
О-Н	Hydrophilic

C-F	Orientation Effect (Dipole-Dipole)
С-Н	Dispersion Effect
О-Н	Hydrogen-Bonding

First Criteria of PFAS

Bulk | **m** ≥ **7** (n ≥ 8)

Self-aggregation: Bio-debris source

Singular $| \mathbf{m} \leq \mathbf{6} (n \leq 7)$

Protein interaction: Transportation into cells

New Concept on SDA

C-F , C=O, C-O etc.	Orientation Effect (Dipole-Dipole)
C-H	Dispersion Effect
O-H	Hydrogen-Bonding

SDA theory is being rapidly accepted by chemistry community

1. Dipole-dipole interaction governs the aggregation of R_f groups

Aq.: H-bonding
Oil: Dispersion **R**_f.: D-D interaction

2. An R_f group has **a helical skeleton**

P ≈ 0 in a macroscopic scale

- Low surface energy: Fluorous
- Low permittivity
- High m.p. (+ entropy)
- Low Solubility

19

Future we must move forward | Impacts on various fields

Toward the sustainable goals of both environment and economy