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Abstract

The paper investigates whether the patenting activity of the most inventive companies

(stars) has any causal e�ect on the number of patents granted to other local inventors

(comets) in the same US metropolitan area. I exploit the panel dimension of the dataset to

account for various �xed e�ects, and I adopt an instrumental variable approach to test for

causality. The results show that the e�ect of stars on comets is overall positive, it is stronger

with a time lag, and the spillovers are not con�ned within narrow technological categories.

The implications for local development policy are discussed.
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1 Introduction

In a recent paper, Greenstone, Hornbeck and Moretti (2010, henceforth GHM) discuss the impor-

tance of understanding whether 'million dollar' plants raise the productivity of local incumbents.

They �nd a substantial e�ect: �ve year later the opening of a new large plant, the productiv-

ity of incumbent plants located in the same US county is 12% higher. The authors argue that

the �ndings are extremely relevant both for economic theory, since they provide evidence on

the mechanisms underlying the agglomeration of economic activities, and for local development

policies, which often subsidize the location of large industrial investments.

At least since Marshall (1980), we know that knowledge spillovers are one of the leading

mechanisms of agglomeration economics. This paper focuses primarily on this channel, which

is not directly addressed by GHM. Exploiting a rich patent database for the United States, I

identify Million Ideas Plants by proxying the company size with the stock of owned patents. I

then assess whether the aggregate number of patents developed by inventors working for star

companies (star patents) has any causal e�ect on the number of patents granted to other inventors

(comet patents) located in the same Metropolitan Statistical Area (MSA). A priori, the e�ect

is not necessarily positive: in a general equilibrium framework, positive knowledge spillovers

produced by star companies may be counterbalanced by upward pressures on nominal wages.

Depending on the relative strength of the two mechanisms, the net e�ect could be null or negative.

Causality is inferred through an original identi�cation strategy based on two-stage least

squares. I build an instrumental variable for star patents based on the interaction among the

historical presence of star companies in a given MSA, and on the contemporaneous variation

in innovation activity of other plants of the same company. Using the NBER/USPTO patent

database, I estimate a model where the number of comet patents produced in a given city, time

period, and technological category is a function of the number of star patents developed in the

same city, period, and category. I exploit the panel dimension of the dataset to account for

time, city and technology �xed e�ects. Consistently with economic theory, results show that

positive e�ects prevail with a broad sectoral classi�cation and a time lag, while negative e�ects

are stronger in the short run and within narrow technological sectors. The net e�ect, however,

is generally positive and signi�cant.

This paper �lls two important gaps in the related economic literature. First, by providing

empirical evidence on the e�ect of knowledge spillovers, it improves our understanding of the

mechanisms of urban agglomeration. Local knowledge spillovers have gained the interest of

economists at least since Marshall (1980), but the quanti�cation of their importance has been

di�cult. Second, the study is related to the wide literature on the economics of innovation
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and patenting, by exploring under-investigated aspects of patent data, i.e., the skewness of the

distribution of patents across inventors and companies, and the connections between more and

less productive inventors.

The paper also o�ers interesting insights for policy. It is well known that innovation activity

is highly concentrated in a small number of cities and regions; these spatial disparities have

pushed a number of policies aimed at enhancing local innovation (Agrawal et al., 2012), often

based on subsidizing the location of R&D labs of large companies. Very little is known, however,

about the e�ectiveness of these policies, i.e., whether they produce any additional e�ects on the

innovation performance of local �rms, or, rather, are just a windfall for large companies, at the

taxpayer's cost. More generally, the paper contributes to the lively debate on cluster policies: a

very popular local development tool among policy makers and academics alike (e.g., European

Commission, 2003; OECD, 2001; Porter, 1998), they still lack of substantial empirical evidence

for the alleged bene�ts, according to a number of economic studies (Accetturo and de Blasio,

2012; Duranton, 2011; Martin, Mayer and Mayneris, 2011; Duranton, Mayer and Mayneris,

2010).

The next paragraph reviews the relevant literature on patents and innovation; the third one

introduces and discusses the de�nition of stars and comets; the fourth one describes the empirical

methodology and the �fth presents the results; the sixth paragraph concludes.

2 Patents, localized knowledge spillovers, and the size of innova-

tion

Patent data have become extremely popular in the economic literature in the last two decades,

as they represent an easy and accessible way to proxy for innovation, which is generally very

hard to measure. Furthermore, the availability of citation linkages further spurred more interest

in patent data: for the �rst time, researchers had a tool to "trace" knowledge spillovers, which

previously had been considered one of the most di�cult variable to de�ne empirically. A popular

book by Ja�e and Trajtenberg (2005), and the free availability of the USTPO dataset from the

NBER website, also contributed to multiply the empirical applications based on patent data.

A signi�cant part of this literature has focused on the geographic component of innovation,

with a particular interest in the spatial decay of knowledge spillovers. A seminal contribution

by Ja�e et al. (1993) shows that a cited-citing patent couple is twice as likely to be in the

same US metropolitan area as a couple of technologically similar patents with no citation links.1

1These �ndings have been strongly criticized by Thompson and Fox-Kean (2005), who argue that the method-
ology underlying the construction of the control group is seriously �awed. With a more robust approach, based
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Similarly, Peri (2005) examines the �ows of citations among 147 European and US regions to �nd

that "only 20% of average knowledge is learned outside the average region of origin", and Ja�e

(1989) demonstrates that academic research has large e�ects on the number of private patents

developed in the same US state. Finally, Carlino et al. (2007) use patent data for a cross-section

of US metropolitan areas to investigate the relationship between urban density and innovation

intensity (as measured by patents per capita) �nding a positive and robust association. All these

contributions (and many similar which I omit for brevity) highlight that knowledge spillovers

have a geographically limited distance decay.

The nature and causes of knowledge spillovers are still debated. For instance, Breschi and

Lissoni (2009), building on previous contributions by Breschi and Lissoni (2001), Zucker et al

(1998), and Almeida and Kogut (1999), highlight that de�ning localized knowledge spillovers as

an externality can be misleading, as most of the knowledge di�usion may take place through

market interactions - namely the spatially-bounded mobility of inventors among workplaces -

rather than through informal contacts. Using data on US inventors' applications to the European

Patent O�ce, they were able to show that after controlling for inventors' labour mobility and the

related professional network, the role of proximity in explaining knowledge di�usion is greatly

reduced.

These issues are related to the growing interest in peer e�ects in science and in the spillovers

originating from star scientists. Azoulay et al. (2010) exploit the exogenous variation in the

number of "superstar scientists" in US universities due to the sudden death of these individuals

to estimate the loss in productivity of their collaborators. They �nd an average 5-10% decline in

their average publication rates, starting 3-4 years after the superstars' death and enduring over

time, but no di�erential e�ect for co-located collaborators. Waldinger (2010) estimates the e�ect

of the dismissal of scientists from Germany universities during Nazism. Similarly to Azoulay et

al., he �nds a strong e�ect on coauthors (13-18%), but no signi�cant e�ects at department level.

Therefore, both studies challenge the existence of localized positive spillovers originating from

stars in academic environments.

Similarly, the advocates of the "death of distance" theory argue for a decreasing importance of

the role of spatial proximity following the progress of communication technologies (e.g., Friedman,

2005; Quah, 1999; Cairncross, 1997). On the other side, a few studies maintain that technological

progress has actually increased the scope for proximity for innovative activities due to the greater

importance of face-to-face contacts and agglomeration externalities (e.g., Coyle, 1999). The few

empirical assessments of the issue seem to support the "death of distance" hypothesis (Gri�th

on a �ner technological classi�cation of patents, the main results of the paper disappear.
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et al., 2007; Ioannides et al., 2008), indeed suggesting that localized knowledge spillovers are

fading over time.

The relationship between highly inventive companies and inventors in small �rms have been

much less explored: to the best of my knowledge, contributions on the subject are con�ned to

the role played by academic star scientists on other researchers (e.g., Azoulay et al., 2010; Oettl,

2011), while industrial patenting is not considered. The only exceptions are Fons-Rosen (2010),

and a very recent working paper by Agrawal et al. (2012). Fons-Rosen (2010) uses data on

the entry of foreign �rms into Central and Eastern Europe during the 1990s to analyze the

e�ect on knowledge �ows on local incumbent inventors; he compares the MNEs which won the

privatization bids with the control group of those which also applied to the bid but lost, �nding

that winners receive 20% more citations by local inventors, on average, than losers. Di�erently

from this paper, its analysis is at national level and is limited to patent citations. Agrawal et

al. (2012) explore the spatial distribution of large and small (patenting) labs across US MSAs,

�nding that the birth rate of new start-ups (de�ned using patents �led for by inventors who were

previously employed by large labs) is higher in metropolitan areas which are more diverse, i.e.,

where large and small labs coexist.

Occasional inventors are important, since they may give birth to new entrepreneurial projects

and spin-o�s. Balasubramanian and Sivadasan (2011) in a recent paper link patent records to

Census �rm data for the US, in order to assess the impact of patents on �rm performance.

They focus in particular on �rms that patent for the �rst time, and �nd a signi�cant and large

e�ect of the �rst patent on �rm growth (but, interestingly, little change in factor productivity).

This would suggest that "occasional" patents have a relevant market value. There is also large

empirical evidence on the primary role played by young and small �rms in innovation (Acs and

Audretsch, 1990) and employment growth (Audretsch, 2002; Haltiwanger et al., Forthcoming).

Furthermore, for the local development policies, patents by smaller companies are probably

more relevant than patents �led for by large corporations. To the extent that the latter are the

outcome of formal R&D activity of large companies, they may have weaker implications on the

local economy. Since patenting �rms are generally large (Balasubramanian and Sivadasan, 2011),

they are often multilocated, and the productivity gains of these inventions are spread across the

di�erent plants (and localities).
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3 Stars and comets

The analysis is based on the NBER/USPTO database, which lists all the patents granted in the

United states from 1975 to 1999.2 For each patent, the database contains the name and city of

residence of the inventor(s), the name of the applicant(s),3 an unique applicant identi�er added

by the NBER working group on patents (based on the standardization of the name of company

and ancillary information), the application and grant year, and the number of citation received.

Patents are classi�ed according to the synthetic technological classi�cation developed by Hall

et al. (2001) who de�ne �ve technological categories: Chemical (excluding Drugs); Computers

and Communications (C&C); Drugs and Medical (D&M); Electrical and Electronics (E&E);

Mechanical.4 Following a common practice in the patent literature, the geographical location of

the patent is derived from the location of the �rst inventor. More details on the data, including

the geocoding process, are reported in Appendix A.5

At �rst glance, the abundance of data makes a micro analysis at inventor or applicant level the

most appealing alternative. A deeper view, however, clari�es that this is not feasible, because

the dataset is about patents, not inventors or applicants, implying that when an inventor or

applicant is not patenting, their location and their activity status are unknown. Furthermore,

there is not an unique inventor identi�er in the dataset, and the only information available is

their full name and their city of residence. Spelling errors are frequent. As a consequence,

the longitudinal tracking of inventors would require a fuzzy matching of names and cities of

residence, with inevitable errors which can easily be non random (e.g., more frequent in cities

where duplicate surnames are more common, or with a higher rate of inventors with foreign

origins). The problem would be perhaps negligible if the focus was only on very productive

inventors or applicants; but given that I am interested also in comets, the issue is crucial.

The analysis is therefore run at city level, focusing on the number of patents produced by

two groups of applicants: star patents and comet patents. The classi�cation of patents into the

two groups is based on the total number of patents granted to the applicant in the whole period

of analysis (1980-1999): stars patents are assigned to the most inventive companies in a given

technological categories, while the remaining patents are de�ned as comets. The most inventive

companies are de�ned as those ranked among the top 50 in their technological category. The

large majority of those companies are located in more than one MSA, which implies that they

2The dataset is described in details in Hall et al., 2001.
3The applicant is the legal entity - either a company or an individual - which owns the right to exploit the

invention. In the large majority of cases, the applicant is the employer of the inventor.
4The sixth technological category, called "other", is a residual classi�cation and is excluded.
5The paper has recently been extended until the 2006 or 2008, depending on the version. However, inventors

data are not publicly available yet; without information on the city of residence of inventors,it is not possible to
correctly geolocate the patents, therefore the date cannot be used here.
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can plausibly be the target of location incentives. As it will be further detailed, this is also a

crucial feature of the identi�cation strategy. In the robustness section, I repeat the empirical

exercise changing the threshold (limiting the de�nition to the top 25 or the top 75 companies),

�nding little variation in the results. The threshold is based on an absolute number, rather

than on a quantile (e.g., top 1%), since the total number of active �rms is di�cult to de�ne in

the patent database.6 Also, since the patent literature o�ers many examples of large companies

�ling for patents for reasons unrelated to new inventions (e.g. patent thickets), and considering

that generally such non-inventive patents are not cited by other patents, I exclude from the star

group all patents which do not receive any citations. In the robustness section I replicate the

analysis with forward citations weighted patents obtaining comparable results.

The following step is the de�nition of the temporal dimension of the analysis. The data used

are rather imprecise in the time dimension for the following reasons: the information is based on

the year in which the patent is granted,7 which is generally 2-3 years after the �rst application;

and it is not possible to know how long an inventor has been working on a patent before applying

for it. Timing when local knowledge spillovers may have e�ect is equally di�cult: it could be

while both the source and destination inventors are working on their respective patents, but it

could also happen a few years after the star has applied for (or been granted) it. By inspecting

the data I found that the median and mean value of the citation lag of patents in the same MSA

is four years, and I therefore choose to adopt periods of the same length (Kerr, 2008, also adopt

a period of the four years).8 This is a reasonable choice in order to "average out" some of the

measurement error in the temporal dimension. Five time periods of four years each are therefore

de�ned, spanning from 1980 to 1999. Econometric analysis is generally limited to the last three

periods (from 1989 to 1999), as MSA controls are unavailable for periods 1 and 2. I de�ne �ve

periods, however, as the �rst is used to build the instrumental variables and lagged variables.

Star patents account for 9% of the total patents granted in the period 1980-1999, while comet

patents are the remaining 91%. Star inventors are around 28% of the total. The metropolitan

area with the highest share (more than 80%) of star is Poughkeepsie, NY (home to a large IBM

plant), while in Bakers�eld, CA, almost all patents are comets.

6Similarly to inventors' identi�ers, the unique identi�er for small companies is not fully reliable due to spelling
errors, homonymy, and changes of name across time; the identi�er for large companies is somehow more reliable,
due to their smaller number and the notoriety of their di�erent denominations.

7The reason why I use the grant year, rather than the application year, is to avoid the bias given by data
truncation. More precisely, using the application year would automatically exclude all the patents not granted
(but applied for) before 1999, as they are not included in the dataset. This subsample could easily be non-random,
e.g. better patents may take longer to be examined, etc.

8I restricted the calculation to patent couples with a maximum citation lag of ten years, as longer lags are
unlikely to be related to knowledge spillovers. The citation lag is calculated as the di�erence between the grant
year of the citing and cited patents.
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3.1 Preliminary evidence on the location of stars and comets

Once controlling for the overall distribution of patenting activity, which is highly spatially con-

centrated, the distribution of comets and stars patents across MSAs shows a remarkable spatial

concentration (�gure 1 and 2). Some MSAs like Rochester, NY or Saginaw-Bay and City-

Midland, MI are clearly specialized in stars, while other show a stronger presence of comets

(e.g., Reno, NV and Omaha, NE-IA). In order to explore in further detail the spatial distribu-

tion of star and comet clusters, Appendix B presents the result from simple regressions of the

share of stars and comets on a set of MSA-speci�c coovariates. The results show that comet

patents are negatively associated with the total number of patents and positively with the total

number of �rms. Conversely, star patents are positively associated with both the number of

patents and a proxy for labour productivity, suggesting that star patents are more frequently

located in cities with a large number of patents and a more skilled workforce. The other explana-

tory variables are not signi�cant. Therefore, comets and star patents are not evenly distributed

over cities, the share of stars being signi�cantly larger in bigger metropolitan areas. This is a

�rst insight policy makers should consider when promoting subsidies to attract stars.

3.2 Why should stars a�ect comets?

An increase in the number of star patents, due to an increase in the productivity or in the number

of star inventors, may have both positive and negative e�ects on the number of comet patents

in the same city.

As I discussed earlier in the paper, positive e�ects may occur through knowledge spillovers.

The idea that cities foster the di�usion of knowledge goes back to Marshall (1890) and it is the

backbone of endogenous growth theory (Lucas, 1988). Duranton and Puga (2004) provide an

excellent survey of the "learning mechanisms" posing the microeconomic foundations of the exis-

tence of cities. However, there is still limited evidence on the channels through which knowledge

spillovers take place (Feldman and Avnimelech, 2011). In the speci�c context of patenting in

cities, it is possible to think about at least �ve di�erent channels:

a) Informal (or tacit) knowledge spillovers: star inventors and comet inventors develop in-

formal (personal) contacts due to residential proximity or other kind of face-to-face interactions.

Thanks to frequent direct contacts with the star inventor, the comet inventor obtain ideas or

hints on their work.

b) Formal knowledge spillovers: star inventors transfer their expertise to comet inventors in

more formal ways, e.g. during seminars or conferences.

c) Workplace contacts: (future) comet inventors may have the opportunity to work in a star
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company, without necessarily being inventors themselves (they may be employed in di�erent

duties, or they may leave the institution at an early stage of their career).

d) Workplace mobility and spin-o�: active star inventors leave star companies and create

their own company, or they are hired by a smaller local company. As correctly pointed out by

Breschi and Lissoni (2009) and Almeida and Kogut (1999), the previous experience may be fully

priced into the inventor's wage, thus in this case the spillover is not an externality.

e) Display/attraction e�ects: the presence of many labs of big companies may attract comets

to a locality, as they may expect to enjoy the e�ects of points a, b, and c. For a young �rm, the

location in a successful city may be also a positive signal to potential founders. This is therefore

an indirect form of positive knowledge spillover.

All the �ve mechanisms may require some time to become e�ective, thus they may be found in

the data with a time lag. Their technological boundaries are also fuzzy: given that they are often

involuntary, tacit knowledge spillovers may be technologically complementary to other, market-

mediated, forms of learning, which are a direct and conscious objective of the inventor. In other

words, the inventor may look (and pay, even in opportunity costs) for spillovers which are closely

related to her �eld of specialization and which she can capitalize with less risk. On the other

hand, the outcome of cross-technology spillovers may be unpredictable, therefore those are not

an intentional goal the inventor is ready to pay for, since it would be a too risky investment. This

line of reasoning recalls the theory of "cross-fertilization of ideas" developed by Jacobs (1969)

and the related economies of diversity, later formalized and empirically validated by Glaeser et

al. (1992).

Potential negative e�ects may be derived in a general equilibrium approach to local labour

markets (Moretti, 2011), and they may mainly occur through an increase in nominal wages.

Indeed, a raise in innovation activity in a local star plant corresponds to an upward shift in the

demand for local scientists, which in turn raises local nominal wages in the sector, at least in the

short run (in the longer run, workers may migrate in from other cities, but the in�ow is limited

by the local supply of housing which a�ects real wages). Both mechanisms a�ect negatively the

number of local comet patents, since local scientists become more costly, without a corresponding

increase in productivity (assuming zero knowledge spillovers). The actual impact of these e�ects

depends on the skill substitutability among star and comet inventors, on the elasticity of supply

of labour (also through migration). Since the latter is likely to be rigid in the short run, the

negative e�ects are expected to be stronger in the short term, and then fade over time. Also,

I expect the negative e�ects to be stronger within narrowly-de�ned technological sectors, since

skill substitutability of workers is higher, and correspondingly the wage e�ect is larger.
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In the following of the analysis, I estimate a simple reduced form model, taking into account

only the net e�ects of all the aforementioned mechanisms. Exploring the e�ect of individual

channels would be much more demanding - also in terms of data - and it is above the scope of

the present paper.

It is worth noticing that all the mechanisms may, in theory, work also in the opposite direction

(from comets to stars); the empirical methodology is therefore designed to be robust to reverse

causality.

4 Analysis

This section investigates whether the production of star patents in a city a�ects the production

of comet patents in the same city and period, and quanti�es this e�ect. The model also allows

a one period lag in the spillover e�ects of stars. The following dynamic panel with �xed e�ects

is estimated:

Cometsikt = β1 · Starsikt + β2 · Starsikt−1 + β2 · Cometsikt−1 + θ1 ·
∑
j 6=i

Zjk
t +

+ θ2 ·
∑
j 6=i

Zjk
t−1 + γ · Totempit + φiδk + δkτt + εikt (1)

where i, k, and t index MSAs, categories, and periods, respectively; stars, comets are the number

of patents in the respective groups, Z is a control speci�c to the MSA/category pair, X is

a set of MSA time-variant controls, and δ, τ, φ are category, time, and MSA �xed e�ects.

The �ve technological categories are the following: Chemical (excluding Drugs); Computers

and Communications (C&C); Drugs and Medical (D&M); Electrical and Electronics (E&E);

Mechanical.9 The analysis is limited to periods 3-4-5, as MSA controls are not available for

previous periods. All the variables are expressed in logarithmic form.

In order to check the consistency of the results across di�erent speci�cations, regressions

are based on four di�erent estimations of model 1. The �rst is an inconsistent OLS estimation

including all the controls but the (endogenous) lagged comets. The second and the third are

2SLS estimates of the contemporaneous and lagged star variable, respectively, excluding all other

continuous controls and including all �xed e�ects; details on the instrumental variable strategy

are reported in the next section. Finally, the fourth estimation includes all the controls, the full

set of �xed e�ects, and the lagged dependent variable; in this case, the model is estimated in �rst

di�erences and the �ow of lagged comets at time t-1 is instrumented with the level value at time

9The sixth technological category, called "other", is a residual classi�cation and is excluded. This does not
a�ect the coe�cients but increase precision of the estimates.
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t-2, following the traditional Arellano and Bond (1991) technique. For easy of comparability

with the second and third estimations, the fourth estimation is also based on 2SLS.10

The MSA/category control (Z) is total number of stars in technological categories di�erent

from i. It is worth noting that this variable might be endogenous: it is not possible to exclude

that comet inventors produce knowledge spillovers bene�ting stars in the other technological

categories. However, the inclusion of this variable has a limited e�ect on the main coe�cients,

especially with the 2SLS estimator. As the latter is robust to omitted variables bias, the estimate

of the coe�cient for the variable of interest (the number of star patents) is consistent even

excluding the (endogenous) control.11

The total MSA employment (totemp) is also included to control for time-variant agglomera-

tion economies and size e�ects.

Finally, as mentioned aboveall regressions include various �xed e�ects, controlling for techno-

logical category and MSA time invariant factors, for time-speci�c shocks, and for technological

category shocks.

4.1 Technological category speci�cation

Data are aggregated following two di�erent technological classi�cations, i.e., the technological

category and subcategory breakdown developed by Hall et al., 2001. In addition, the model is

also estimated with aggregated data. The three di�erent level of technological aggregations may

give interesting insights on the technological boundaries of knowledge spillovers.

4.2 The choice of the MSA as areal unit

Ideally, the spatial unit at which individual observations are aggregated should match the spatial

decay of both knowledge spillovers and labour market clearing forces. Since both boundaries are

inde�nable entities, the spatial de�nition should entail a substantial degree of approximation;

furthermore, data limitation are particularly stringent at a detailed geographical level. With

respect to labour market analysis, the choice of commuting-de�ned areas, like the MSAs in US,

is now widely considered to be a viable option.12 The de�nition of the spatial decay of knowledge

spillovers is more debated: while several studies have adopted spatial areas as large as US States

10In the fourth estimation, the set of endogenous variables are the �rst di�erences of stars, the �rst lag of
the �rst di�erences of stars, and the �rst lag of the �rst di�erences of comets; the excluded instruments are the
contemporaneous level and �rst lag of the ad-hoc exogenous instrument described in the next section, and the
�rst lag of the �rst di�erence of comets. The 2SLS estimation comes at a cost of reduced e�ciency as compared
to GMM, but e�ciency does not appear to be a major issue in this context. Comparable results based on GMM
estimations are available from the author upon request.

11Attempts to instrument the variable with the sum of the instrument in the other categories provide similar
results, but estimates were less precise, due to the large number of endogenous variables and instruments.

12See Menon (2012) for a discussion of the statistical properties of MSAs.
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(e.g. Ja�e, 1989; Peri, 2005), available evidence suggests that the e�ect of knowledge spillovers

may fade out within a few miles (Arzaghi and Henderson, 2008; Jofre-Monseny et al., 2010).

Since the reduced-form e�ect we estimate is supposed to be a mix of labour market and

knowledge spillovers mechanisms, the Metropolitan Statistical Area is the most sensible spatial

unit of analysis, among the limited number of available options. As a consequence, the e�ect of

short-decay knowledge spillovers may be underestimated. It is therefore appropriate to specify

that the analysis takes into account only MSA-level knowledge spillovers, which may not fully

re�ect other short-decay spillovers.

4.3 Instrumental variable estimation of the star variables

Estimates of equation 1 can be inconsistent due to reverse causality or omitted variable biases,

especially for the main variable of interest (the number of star patents). For instance, comets

may a�ect the productivity of stars, and a dynamic university (or public subsidies) may attract

a large number of comet and star inventors to the same city. I therefore create an instrumental

variable for the number of star patents in order to allow a causal interpretation of the results.

The intuition for the instrument builds on the fact that assignees of stars are generally

multilocated. Most star companies are located in several MSAs in di�erent US states. Table 1

lists the top 25 assignees in the period under examination (1980-1999), reporting the number

of di�erent MSAs and states where at least 100 patents are developed, and the highest share

of patents developed in an individual MSA: only two companies are located in only one MSA

(Ford Motor and Procter & Gamble), while all the remaining assignees are located in several

di�erent cities and states. Smaller assignees of star patents show a similar pattern. Therefore, an

exogenous variation in the productivity of star inventors in a given MSA and period may arise

from the interaction of two factors: i) an historical presence of inventors working for a given

company in that MSA, and ii) a US-wide increase in the productivity of this company in the

given period. To the extent that the �rst factor is path-dependent and exhibits some inertia

over time, it is exogenous to contemporaneous MSA-speci�c factors once MSA �xed e�ects are

introduced in the speci�cation. At the same time, I expect the productivity of star inventors

working for the same companies - but in di�erent cities - to be correlated, due to sharing a similar

company strategies and resources, competition pressure, market demand, etc. I then suppose

that a US-wide productivity shift in a given company translates into MSA-speci�c productivity

shocks in proportion to the number of inventors working for that company in the given MSA.

The IV strategy is close in spirit to the approach of Bartik (1991) and Blanchard and Katz

(1992), among others, who instrument regional economic growth interacting the lagged sectoral
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structure of a region with the contemporaneous national sectoral trend. In the next section the

construction of the instruments is explained in detail.

4.3.1 Instrumental variable construction

The instrumental variable is calculated as follows:

a) For the �rst period, I calculate the share of star inventors active in a given MSA and

with a given assignee. In the case of star inventors with multiple MSAs or assignees in the same

period, the modal one is chosen.

b) For each period, each assignee, and each MSA, I calculate the average number of

patents produced by star inventors in that period in the whole US, excluding the given MSA.

c) For each MSA, period, and assignee, I multiply the number of inventors in the �rst

period calculated at point a) by the average number of patents produced by star inventors sharing

the same assignee in period t calculated in b). Subsequently, I sum the outcome by MSA, period,

and technological category (if an inventor has patented in di�erent categories in the same period,

the modal one is chosen). The result is the second instrumental variable for total number of star

patents in period t, by MSA and category.

Formally, it can be summarized by the following equation:

IVikt = Σa(StarsInvika1 ·AvPatiat)/Patik,t=1 (2)

where i indexes MSAs, t periods, k technological categories, and a the assignees. In the few

cases in which the value of point b is missing (because there are not other stars with the same

assignee in other MSAs), it is replaced with the contemporaneous US-wide average productivity

of stars in the same technological category. The value of the IV is then divided by the total

number of star patents in period 1 in the MSA-category to neutralize the scale factor.

The validity of the IV relies on an exclusion restriction for point a), i.e., once MSA �xed

e�ects are controlled for, the number of star inventors working for a given assignee in the �rst

period has no independent e�ect on the number of comet patents developed in period n in the

same MSA/category; and on an assumption of exogeneity for b), i.e., given that stars and comets

have di�erent assignees, I assume that the average productivity of an assignee in the whole US

(calculated excluding the given MSA) has no independent e�ect on the productivity of comets

of that MSA.

It could be, however, that the address of residence of a few inventors does not truly re�ect

the location of their workplace while working on the patent; this can be due to errors in the data

or geocoding process, or to a subsequent change in the inventor's address. This would threaten
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the exogeneity of the IV, as the productivity of those inventors would not be exogenous to local

unobservables. When building the IV, I therefore drop from the sample all the company-MSA

pairs with less than 100 patents; i.e., I exclude those patents located in MSA where the given

assignee is not patenting with regularity.

5 Results

The regression results are reported in table 2-4.13 As noted in the previous section, the estima-

tions are based on four di�erent speci�cations - OLS with controls, 2SLS with contemporaneous

stars only, 2SLS with lagged stars only, and �rst-di�erence dynamic panel with the full set of

variables - at three aggregation levels: MSAs (table 2), MSAs and �ve technological categories

(table 3), and the MSAs and 27 technological subcategories (table 4). All columns with IV esti-

mation also report the Angrist and Pischke (2009, pp. 217-18) �rst-stage F statistics for tests of

weak identi�cation when there is more than one endogenous regressor. When just one variable is

considered to be endogenous, the test is equivalent to the traditional �rst stage F-statistic.14In

most cases, results from �rst-stage regressions con�rm that the instrument is strong, especially

at category and subcategory level.15

At MSA level (table 2), the contemporaneous e�ect of stars is always signi�cant, and the

coe�cient ranges from 0.8 to 0.15. With a one period lag, the e�ect of star patents is still

signi�cant and the 2SLS coe�cient ranges between 0.10 and 0.17. These results suggest that

technological boundaries are not particularly important for knowledge spillovers, and that they

require some time before becoming e�ective (when both are included, the lagged coe�cient is

always larger than the contemporaneous one). The other control variables are not signi�cant.

When the sample is decomposed into technological categories (table 3), the contemporaneous

coe�cient is now not signi�cant, while the 2SLS elasticity for the lagged star variable is equal

to 23% in both the 2SLS regressions in which it is included (col. 3-4). The control variables are

13Standard errors are clustered at at the cross-sectional unit of observation, i.e., the MSA, the MSA-category,
or the MSA-subcategory. Alternative estimates based on clustering at the state-year pairwise combination give
almost identical standard errors. Since the distribution of total patents across MSAs shows a large variance, all
regressions are (analytically) weighted by the total number of patents over the period of analysis (see Angrist and
Pischke, 2008, for a detailed discussion on the suitability of weighted regressions when the sample is composed
by grouped individual observations). We also dropped all the MSA-Category pairs with less then 10 patents over
the whole period of analysis. Unweighted regression results and full sample results are qualitatively similar but
less precise. They are available from the author upon request.

14The Angrist-Pischke (AP) �rst-stage F statistic is calculated for each individual endogenous regressors by
"partialling-out" linear projections of the other endogenous regressors. The AP test will fail to reject if a particular
endogenous regressor is unidenti�ed. Values of the AP �rst-stage F can be compared to the Stock-Yogo (2002,
2005) critical values for the Cragg-Donald F statistic with K1=1.

15The only case in which the AP statistic is critically low is in col. 4 of table 2; the low value refers to the 1st
stage regression of the lagged comet IV. The results of this column should therefore be interpreted with caution,
although they are fully consistent with more robust speci�cations.
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signi�cant only in the OLS regression (col. 1).

When the sample is further decomposed into 27 technological subcategories (table 4), results

are qualitatively similar, although the size of the main coe�cients is reduced. While the lagged

star coe�cients are still positive and overall signi�cant, its 2SLS value is now equal to 0.12. The

contemporaneous coe�cient is small and (weakly) signi�cant only in col. 4. The lagged number

of comet patents in the same MSA and subcategory has a signi�cant and large e�ect, suggesting

that spillovers within the comet group are more technologically bounded than spillovers from

stars to comets.

Summing up, the results suggest that i) the e�ect of stars on comets is overall positive, ii) it is

stronger with a time lag, and iii) positive stars-to-comets spillovers are not con�ned within narrow

technological categories. Consistently with the theoretical predictions, the results also suggest

that factor cost e�ects (upward pressure on wages), which push the coe�cient downward, are

stronger within narrow technological categories and in the short run, while knowledge spillovers

take a few years before being e�ective, and may be technologically complementary.

Why OLS estimates are downward biased? There are three plausible explanations for that:

negative selection, measurement error, and local average treatment e�ect (LATE). Negative

selection may arise because, in general, those star inventors that are more "exposed" to comet

inventors might produce less knowledge spillovers than the average star inventor. In other words,

star inventors localized in "comet cities" may be "worse" than star inventors localized in "star

cities". As this lower quality is unobserved, it introduces a (downward) bias in the OLS estimates.

Another plausible explanation for the downward bias could be a measurement error in the star

variable: the intensity of activity of star inventors in a locality is approximated by the number of

patents they produce, but the measure is clearly noisy, as patents are heterogeneous in quality.

To the extent that the measurement error of the instrumental variable is independent from

the one in the endogenous variable, IV estimates may eliminate the "attenuation bias" of the

OLS coe�cient. The independence of the two errors is plausible as the variables are measured

using patents in di�erent localities (in the speci�c city and in the whole US excluding that city,

respectively). Finally, to the extent that the elasticity of the endogenous regressor to changes

in the instrumental variables is not constant across groups, 2SLS estimates may correspond to

a local treatment e�ect, rather than to an average treatment e�ect (ATE) (Imbens and Angrist,

1994). In this speci�c context, it is likely that the elasticity of the endogenous variable to

the instrument is higher for incumbent plants, since one of the component of the instrument

is the historical presence of star inventors in the MSA. Incumbent plant inventors may have a

stronger e�ect, since they are more connected with local comets; this may explain an higher local

15



treatment e�ect.

5.1 Robustness

The �rst robustness test challenges the choice of limiting the de�nition of star company to

the top 50 companies within a given technological category. I replicate the analysis with two

di�erent ranking thresholds, equal to 25 and 75, respectively. The results of the �rst-di�erences

IV estimation with the lagged dependent variables are reported in table 5, all the other are

available from the author upon request. The values of the main coe�cients are close to those

presented above, and my general conclusions are una�ected by the change in the threshold.16

Another point of concern is the choice of considering only the �rst author of the patent in the

geolocalization process.17 This is based on the assumption that the �rst author is the leading

scientist, but it would introduce a bias if authors are listed in alphabetical order. Therefore,

in table 6 I check whether authors whose surname begins with one of the �rst letters of the

alphabet are more likely to be reported as �rst author, compared with second or third authors,

�nding that di�erences in probability are very low and fade out after the �rst �ve-six letters.

This evidence therefore suggests that the �rst author should be the project leader.

The choice of patent count as a measure of productivity of star inventors may also be ques-

tioned, since patents are very heterogeneous in quality and value. As a consequence, star patent

counts can be a very noisy proxy. Although I exclude from the star group all patents which do not

receive any citations, this might not be enough. It we interpret the patent value heterogeneity

as a classic measurement error leading to attenuation bias, to the extent that the measurement

error in the instrumental variable is independent from those in the endogenous variable, the 2SLS

estimation strategy would be su�cient to get rid of the bias. Unfortunately, given that both the

variables refer to the same company, the assumption of the independence of the measurement

error may not hold. There is, however, another solution available, i.e., weighting star patents by

the number of forward citations, since the latter has been shown to be a reasonably good proxy

for patent value (Hall et al., 2005). I can then replicate the analysis using the quality-corrected

measure of star patents. The results of the �rst-di�erences speci�cation are reported in table 6,

all the other tables are available upon request. Again, coe�cient values are close to those of the

main speci�cations.

16The star coe�cients tend to slightly increase with a lower threshold, while the lagged comet comet tend to
decrease. This is due to the fact that part of the e�ect attributed to comet patents with a higher threshold
is mechanically shifted to the star group once a lower threshold is used. The change in the coe�cient value is
however small, and seldom statistically signi�cant.

17In the patent literature, using only the �rs author is probably the most common option, although some
researchers also use fractional count or multiple allocation.
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6 Conclusions

This paper assesses whether the number of patents developed by inventors working for the most

inventive companies (star patents) has any causal e�ect on the number of patents granted to

other inventors (comet patents) located in the same MSA. The two categories of patents - stars

and comets - are identi�ed according to the total number of patents owned by their assignees.

Economic theory predicts that an increase in innovation activity of star companies a�ect

the production of comet patents positively through knowledge spillovers, and negatively through

increased local wages. The empirical �ndings are coherent with the theoretical framework: results

show that positive e�ects prevail; they are stronger with a time lag and are not necessarily

bounded within sectors, providing support for the relevance of economies of diversity. On the

other side, net e�ects are smaller in the short run and within narrow technological sectors.

Results survive to a number of potentially demanding robustness tests. These �ndings are in

line with a substantial stream of research proving the economic relevance of localized knowledge

spillovers.

The �ndings also bring in relevant implications for local development policies. As discussed by

GHM, policy makers are increasingly keen in subsidizing the local investments of large companies,

with the idea that these may generate agglomeration spillovers and bene�t local �rms. Do my

�ndings provide ground to these policies? Given the positive e�ect of stars on the productivity

of comets, the attraction of stars to a city may have a positive e�ect on the local economic

environment: in the medium run, stars positively a�ect comets, which in turn might foster

the birth of new plants, the innovation output of small businesses, and the generation of new

employment. Thus, even though R&D labs of big corporations may have only a limited direct

e�ect on the local economy, as most the of the employment and value added is located elsewhere,

they might still be bene�cial. However, the attraction of stars may impact sectors and time

periods which are not those directly a�ected by the policy intervention, making di�cult for

policy makers to target speci�c sectors and to seeing bene�ts in the short term.

Furthermore, to the extent that stars and comets tend to locate in di�erent places in absence

of policy intervention (as suggested by their uneven distribution across MSAs), attracting stars

where comets are might not be a successful policy, as stars in "comets' places" may be less

productive. In other words, the same location for comets and stars would end up to be sub-

optimal for (at least) one of the two categories. Therefore, interfering in the location choice of

stars (or comets) in order to increase their spatial proximity to comets may lead to a much weaker

e�ect than expected. Considering also that this kind of "attraction policy" can be quite costly,

the �ndings are probably more on line with the skeptical arguments of economists questioning
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the alleged bene�ts of cluster policies (Duranton, 2011), rather than with the thesis of their

proponents.
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Table 1: The location of big patenting companies

Note: the �rst column reports the number of patents owned by the company, the second (third) column report
the number of di�erent MSAs (US States) in which at least 100 patents have been authored by local inventors,
and the fourth column reports the share of patents authored in the MSA with the largest number of authored
patents.

Source: author's elaboration on NBER Patent database.

23



Table 2: The e�ect of stars on comets, level of aggregation: MSA
(1) (2) (3) (4)

Method OLS 2SLS - F E. 2SLS - F D.

Stars (t) 0.111** 0.150** 0.079*

(0.050) (0.071) (0.042)

Stars (t-1) 0.095*** 0.168** 0.158**

(0.022) (0.079) (0.074)

Comets (t-1) 0.223

(0.679)

Total MSA empl. 0.243* -0.077

(0.132) (0.422)

FIRST STAGE REGRESSION

AP Stars (t) 115.2 41.83

AP Stars (t-1) 56.30 15.79

AP Comets (t-1) 1.127

Period F.E. YES YES YES YES

Observations 840 840 840 560
Note: robust standard errors, clustered at MSA level, in parentheses. The dependent variable is the number of

comets.The endogenous variable are Stars (t), Stars (t-1), and Comets (t-1). The excluded instruments are IV

(t) (col. 2); IV(t-1) (cols. 3); d.IV(t) and d.IV(t-1), IV(t) and Comets (t-2) (col. 4). *** p<0.01, ** p<0.05, *

p<0.1
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Table 3: The e�ect of stars on comets, level of aggregation: MSA-Category
(1) (2) (3) (4)

Method OLS 2SLS - F E. 2SLS - F D.

Stars (t) -0.001 0.080 -0.025

(0.021) (0.069) (0.079)

Stars (t-1) 0.051*** 0.233** 0.233***

(0.018) (0.097) (0.077)

Comets (t-1) 0.471

(0.339)

Stars oth. cats. (t) 0.089*** 0.051

(0.031) (0.049)

Stars oth. cats. (t-1) 0.059*** -0.023

(0.018) (0.034)

Total MSA empl. 0.406*** -0.223

(0.146) (0.343)

FIRST STAGE REGRESSION

AP Stars (t) 84.87 12.25

AP Stars (t-1) 40.16 18.97

AP Comets (t-1) 5.442

MSA*cat f.e. YES YES YES YES

Cat.*Period f.e. YES YES YES YES

Observations 7,549 7,549 7,549 4,966
Note: robust standard errors, clustered at MSA level, in parentheses. The dependent variable is the number of

comets.The endogenous variable are Stars (t), Stars (t-1), and Comets (t-1). The excluded instruments are IV

(t) (col. 2); IV(t-1) (cols. 3); d.IV(t) and d.IV(t-1), IV(t) and Comets (t-2) (col. 4). *** p<0.01, ** p<0.05, *

p<0.1
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Table 4: The e�ect of stars on comets, level of aggregation: MSA-Subcategory
(1) (2) (3) (4)

Method OLS 2SLS - F E.

Stars (t) -0.001 0.033 0.052*

(0.014) (0.028) (0.027)

Stars (t-1) 0.039*** 0.120*** 0.123***

(0.011) (0.034) (0.034)

Comets (t-1) 0.426***

(0.122)

Stars oth. subcats. (t) 0.058*** 0.026

(0.018) (0.022)

Stars oth. subcats. (t-1) 0.054*** 0.007

(0.016) (0.026)

Total MSA empl. 0.426*** -0.209

(0.098) (0.174)

FIRST STAGE REGRESSION

AP Stars (t) 395.0 145.7

AP Stars (t-1) 186.6 163.2

AP Comets (t-1) 54.03

MSA*subcat f.e. YES YES YES YES

Subcat.*Period f.e YES YES YES YES

Observations 14,235 14,235 14,235 9,387
Note: robust standard errors, clustered at MSA level, in parentheses. The dependent variable is the number of

comets.The endogenous variable are Stars (t), Stars (t-1), and Comets (t-1). The excluded instruments are IV

(t) (col. 2); IV(t-1) (cols. 3); d.IV(t) and d.IV(t-1), IV(t) and Comets (t-2) (col. 4). *** p<0.01, ** p<0.05, *

p<0.1
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Table 6: The e�ect of stars on comets, citation-weighted stars
(1) (2) (3)

Level of aggregation MSA MSACAT MSASUBCAT

Stars (t) 0.100* -0.018 0.050***

(0.055) (0.073) (0.018)

Stars (t-1) 0.105* 0.268** 0.109***

(0.054) (0.118) (0.034)

Comets (t-1) 0.486 0.555 0.432***

(0.496) (0.398) (0.126)

Stars oth. cats. (t) 0.012 0.014

(0.028) (0.015)

Stars oth. cats. (t-1) -0.014 0.013

(0.026) (0.014)

Total MSA empl. -0.231 -0.329 -0.224

(0.336) (0.430) (0.189)

Individual f.e. YES YES YES

Cat.*Period f.e. NO YES NO

Subcat.*Period f.e NO NO YES

Observations 560 4,966 9,391
Note: robust standard errors, clustered at MSA level, in parentheses. The dependent variable is the number

of comets.The endogenous variable are Stars (t), Stars (t-1), and Comets (t-1). The excluded instruments are

d.IV(t) and d.IV(t-1), IV(t) and Comets (t-2). *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Inventors' surname initial and patent authors' sequence

Note: the table reports the absolute and relative frequency by wich patent authors whose surname begin with
the letter listed in col. 1 are reported as �rst, second, or third patent authors.

Source: author's elaboration on NBER Patent database.
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A Data

Patent data come from the United states Patent and Trademark O�ce (USTPO) database as

processed by the National Bureau of Economic Research (NBER), described in Hall et al., 2001.

To the original dataset I add the inventors' unique identi�er developed by Trajtenberg et al

(2006) and the standardized assignee name available in Prof. Bronwyn H. Hall's website.18 I

am aware that the latter is not fully reliable as i) the complex ownership structure of companies

may imply that di�erently named assignees correspond, in fact, to the same company, and ii) the

same company name can be spelled in di�erent ways (and the standardization routines cannot

completely solve the problem).

I eliminate patents granted to inventors residing outside US and geolocated all the cities of

residence of inventors through the ArcGis geolocator tool (based on the 2000 gazzetter of US

places from US Census) and the Yahoo! Maps Ib Services. In the case where several authors

are listed for the same patents and they live in di�erent cities, the city of residence of the �rst

author is chosen; this is a standard procedure in patent literature, and Carlino et al. (2007) show

that the approximation is substantially innocuous. The geocoding operation was successful for

1,161,650 patents, which correspond to 97% of the database. I then assigned cities to counties

using the ArcGis spatial join tool, and subsequently counties into MSAs (1993 de�nition). To

my knowledge, this is the �rst time that patent data are geocoded (almost) entirely, without

ignoring small counties.

B The spatial distribution of stars and comets

In order to explore the location pattern of stars and comets across US MSAs, I set up a simple

regression for periods 3-4-5 based on the following equations:

Share(Comets)it = β1Xit + δt + εit (3)

Share(Stars)it = β2Xit + δt + εit (4)

where i indexes MSAs and t periods, Xit is a matrix of MSA-speci�c coovariates, β1 and β2

are vectors of coe�cients, and δt is a time �xed e�ect. These regressions are purely descriptive:

they produce some partial correlations which are useful to assess whether stars and comets

show two distinctive location patterns, depending on a few observable characteristics of cities.

The variables included in X are a list of proxies of the economic structure of the MSA: total

18http://elsa.berkeley.edu/~bhhall/
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employment (totemp), a proxy of labor productivity (total payroll over employment, labprod), the

share of employment in manufacturing (manuf. share), Her�ndahl diversity index (Her�ndahl,

calculated as the sum of the squares of the share over the total of employment of 2-digit SIC

sectors), and the number of plants with less then 500 employees (n. plants <500 emp.). I also

include the number of total patents in the MSA in order to control for the size of the patenting

sector in the city. The sample is restricted to the last three periods and comprehends all the

MSAs. The structural variables refer to the �rst year of the time period, while the patent

variables are summed over the whole period. All the variable are expressed in logarithmic form.

The results - reported in table 2 - show that comet patents are negatively associated with the

total number of patents and positively with the total number of �rms. Conversely, star patents

are positively associated with both the number of patents and the proxy for labour productivity,

suggesting that star patents are more frequently located in cities with a large number of patents

and a more skilled workforce. The other explanatory variables are not signi�cant.

Table 8: Regression of comets/stars shares at MSA level
(1) (2) (3) (4)

VARIABLES Comets (share) Stars (share) Comets (share) Stars (share)

Tot. emp. -0.110*** 0.444*** 0.083** -0.032

(0.034) (0.140) (0.039) (0.156)

Prod -0.079* 0.335** 0.046 0.026

(0.042) (0.143) (0.040) (0.146)

Her�ndahl -0.042 -0.253 -0.079 -0.171

(0.062) (0.253) (0.058) (0.259)

N. plant <500 emp. 0.068* -0.188 0.088** -0.244

(0.037) (0.154) (0.037) (0.149)

Manuf. share -0.020 0.153 -0.011 0.133

(0.034) (0.096) (0.033) (0.096)

Tot. MSA pat. -0.186*** 0.467***

(0.028) (0.074)

Period dummies YES YES YES YES

Constant 0.100 -4.661*** -1.333*** -1.545

(0.469) (1.774) (0.480) (1.767)

Observations 691 691 691 691

Number of MSAs 256 256 256 256
Note: robust standard errors, clustered at MSA level, in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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