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OVERVIEW

The test design for PISA was based on a variant of matrix sampling (using different sets of items and different assessment 
modes) where each student was administered a subset of items from the total item pool. That is, different groups of students 
answered different yet overlapping sets of items. That makes it inappropriate to use any statistic based on the number 
of correct responses in reporting the survey results. Differences in total scores, or statistics based on them, among students 
who took different sets of items may be due to variations in difficulty of the test forms. Unless one makes very strong 
assumptions – for example, that the different test forms are perfectly parallel – the performance of two groups assessed 
in  a matrix sampling arrangement cannot be  directly compared using total-score statistics. Moreover, item-by-item 
reporting ignores the dissimilarities of proficiencies of subgroups to which the set of items was administered. Finally, using 
the average percentage of items answered correctly to estimate the mean proficiency of students in a given subpopulation 
does not provide any other information about the distribution of skills within that subpopulation (e.g. variances).

The limitations of number or percent correct scoring methods can be overcome by using item response theory (IRT) scaling. 
When responding to a set of items requires a given skill, the response patterns should show regularities that can be modelled using 
the underlying commonalities among the items. This regularity can be used to characterise students as well as items in terms of a 
common scale, even if not all students take identical sets of items. This makes it possible to describe distributions of performance 
in a population or subpopulation and to estimate the relationships between proficiency and background variables.

To increase the accuracy of the measurement, PISA uses plausible values – which are multiple imputations – drawn from 
a posteriori distribution by combining the IRT scaling of the test items with a latent regression model using information 
from the student context questionnaire in a population model.

In the following section, an overview of the data yield, data preparation, and data quality is given. Then the population 
model used for PISA (IRT analysis, latent regression model and computation of plausible values) is described formally, 
followed by demonstrating its application to the PISA data describing the national and international item calibration, 
as well as the computation of plausible values. The procedures utilised for the linking, with the aim to obtain equivalent 
scales, are further described.

DATA YIELD AND DATA QUALITY

before data were used for scaling and population modelling, different analyses were carried out to examine the quality 
of data and to ensure that data met the test design criteria. The following subsections give an overview of these analyses 
and their results. Overall, the data quality could be confirmed and data could be approved for scaling.

Targeted sample size, routing and data yield

Targeted sample size

The main survey assessment design for PISA 2015 covered the domains of reading, mathematics, and science, as well 
as  financial literacy as an optional domain, as computer- and paper-based designs. The computer-based design also 
included the  collaborative problem solving (CPS) domain. The  computer-based design for  countries that opted out 
of  the assessment of  collaborative problem solving (CPS) is  described in  Chapter 2  of this technical report. These 
designs required participating countries to sample a minimum of 150 schools representing their national population 
of  15-year-old students. Countries taking the  computer-based assessment (CBA) with collaborative problem solving 
needed to sample 42 students from each of 150 schools for a total sample of 6 300 students, while countries taking 
the  computer-based assessment (CBA) without collaborative problem solving or  the paper-based assessment (PBA) 
needed to sample 35 students from each of 150 schools for a total sample of 5 250. It is important to understand that 
88% to 92% of students received a form that consists of four 30-minute clusters, or sets of tasks, assembled from two 
domains, resulting in one hour of assessment time per domain with a  total of  two hours of  testing time per student. 
An additional 8% to 12% of students received forms consisting of four 30-minute clusters covering three of the four core 
domains; science was included in each of these forms (see Chapter 2 for more details).

Data yield

Table 9.1 below shows the sample sizes and assessment languages for all 72 participating countries. Note that a student 
was only considered a “respondent” and included in the analysis if the student responded to at least half of the test items. 
When less than half of the test items were answered, the student had to respond to at least one test item and have at least 
one non-missing response to a part of context questionnaire items ST012 or ST013 (ST012 has 8 questions that ask about 
how many TV’s cars, etc. in the household; ST013 asks how many books in the house).
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Table 9.1

[Part 1/2]
Test mode, sample size per country and language

Country Language Test mode Financial literacy N of subsample N of schools N total

Albania Albanian PBA  5 215 230 5 215

Algeria Arabian PBA  5 519 161 5 519

Argentina Spanish PBA 6 349 234 6 349

Australia English CBA/CPS X 14 530 758 14 530

Austria German CBA/CPS  7 007 269 7 007

Belgium Dutch 
French 
German

CBA/CPS
X 5 675

3 594
382

288 9 651

Brazil Portuguese CBA/CPS X 23 141 841 23 141

Bulgaria Bulgarian CBA/CPS  5 928 180 5 928

Canada English
French CBA/CPS X 15 444

4 614
759 20 058

Chile Spanish CBA X 7 053 227 7 053

China (B-S-J-G) Chinese CBA/CPS X 9 841 268 9 841

Colombia Spanish CBA/CPS  11 795 372 11 795

Costa Rica Spanish CBA/CPS  6 866 205 6 866

Croatia Croatian CBA/CPS  5 809 160 5 809

Cyprus* English
Greek CBA/CPS 775

4 796
126 5 571

Czech Republic Czech CBA/CPS  6 894 344 6 894

Denmark Danish CBA/CPS  7 161 333 7 161

Dominican Republic Spanish CBA  4 740 194 4 740

Estonia Estonian
Russian CBA/CPS 4 338

1 249
206 5 587

Finland Finnish
Swedish CBA/CPS 5 534

348
168 5 882

France French CBA/CPS  6 108 252 6 108

Former Yugoslav 
Republic of Macedonia

Albanian
Macedonian
Turkish

PBA
1 338
3 895

91

106 5 324

Georgia Azerbaijani
Georgian
Russian

PBA
205

4 954
157

262 5 316

Germany German CBA/CPS  6 504 256 6 504

Greece Greek CBA/CPS  5 532 211 5 532

Hong Kong (China) Chinese
English CBA/CPS 5 238

121
138 5 359

Hungary Hungarian CBA/CPS  5 658 245 5 658

Iceland Icelandic CBA/CPS  3 371 124 3 371

Indonesia Indonesian PBA  6 513 236 6 513

Ireland English
Irish CBA 5 638

103
167 5 741

Israel Arabian
Hebrew CBA/CPS 1 683

4 915
173 6 598

Italy German
Italian
Slovenian

CBA/CPS
X 1 581

9 914
88

474 11 583

Japan Japanese CBA/CPS  6 647 198 6 647

Jordan Arabian PBA  7 267 250 7 267

Kazakhstan Kazakh
Russian PBA 4 808

3 033
232 7 841

Korea Korean CBA/CPS  5 581 168 5 581

Kosovo Albanian PBA  4 826 224 4 826

Latvia Latvian
Russian CBA/CPS 3 584

1 285
250 4 869

Lebanon English
French PBA 1 850

2 696
270 4 546

Lithuania Lithuanian
Polish
Russian

CBA/CPS
X 5 153

624
748

311 6 525
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Table 9.1
[Part 2/2]
Test mode, sample size per country and language

Country Language Test mode Financial literacy N of subsample N of schools N total

Luxembourg English
French
German

CBA/CPS
215

1 440
3 644

44 5 299

Macao (China) Chinese
English
Portuguese

CBA/CPS
3 651

779
46

45 4 476

Malaysia English
Malaysian CBA/CPS 1 433

7 428
225 8 861

Malta English PBA  3 634 59 3 634

Mexico Spanish CBA/CPS  7 568 275 7 568

Republic of Moldova Romanian
Russian PBA 4 258

1 067
229 5 325

Montenegro Serbian CBA/CPS  5 665 64 5 665

Netherlands Dutch CBA/CPS X 5 385 187 5 385

New Zealand English CBA/CPS  4 520 183 4 520

Norway Bokmål
Nynorsk CBA/CPS 5 007

449
229 5 456

Peru Spanish CBA/CPS X 6 971 281 6 971

Poland Polish CBA X 4 478 169 4 478

Portugal Portuguese CBA/CPS  7 325 246 7 325

Qatar Arabian
English CBA 7 341

4 742
167 12 083

Romania Hungarian
Romanian PBA 414

4 462
182 4 876

Russian Federation Russian CBA/CPS X 6 036 210 6 036

Singapore English CBA/CPS  6 115 177 6 115

Slovak Republic Hungarian
Slovak CBA/CPS X 402

5 948
290 6 350

Slovenia Slovenian CBA/CPS  6 406 333 6 406

Spain Basque
Catalan
Galician
Spanish
Valencian

CBA/CPS

X 141
1 202

161
5 092

140

201 6 736

Sweden English
Swedish CBA/CPS 71

5 387
202 5 458

Switzerland French
German
Italian

CBA
1 307
3 531
1 022

227 5 860

Thailand Thai CBA/CPS  8 249 273 8 249

Chinese Taipei Chinese CBA/CPS  7 708 214 7 708

Trinidad and Tobago English PBA  4 692 149 4 692

Tunisia Arabian CBA/CPS  5 375 165 5 375

Turkey Turkish CBA/CPS  5 895 187 5 895

United Arab Emirates Arabian
English CBA/CPS 7 436

6 731
473 14 167

United Kingdom English
Welsh CBA/CPS 13 818

339
288 14 157

United States English CBA/CPS X 5 712 177 5 712

Uruguay Spanish CBA/CPS  6 062 220 6 062

Viet Nam Vietnamese PBA  5 826 188 5 826

All Countries N/A N/A N/A N/A 17 429 509 032

* Note by Turkey: The information in this document with reference to “Cyprus” relates to the southern part of the Island. There is no single authority representing both Turkish and 
Greek Cypriot people on the Island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the 
United Nations, Turkey shall preserve its position concerning the “Cyprus issue”.

Note by all the European Union Member States of the OECD and the European Union: The Republic of Cyprus is recognised by all members of the United Nations with the exception 
of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus.

1. Only students taking assessment in Dutch took financial literacy.

2. China (B-S-J-G): People’s Republic of China’s data represents the regions of Beijing, Shanghai, Jiangsu, and Guangdong.

Due to population size and operational issues, not all countries satisfied the sample size requirement for the assessments 
they chose. Figures 9.1 and 9.2 show the sample yields for each participating country. Two charts are used because 
the sample size requirement is 6 300 for computer-based testing and collaborative problem solving and is 5 250 for both 
computer-based (without collaborative problem solving) and paper-based testing.
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• Figure 9.1 •
Sample yield for the participating countries with CBA/CPS format
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* Note by Turkey: The information in this document with reference to “Cyprus” relates to the southern part of the Island. There is no single authority representing both Turkish and 
Greek Cypriot people on the Island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the 
United Nations, Turkey shall preserve its position concerning the “Cyprus issue”.
Note by all the European Union Member States of the OECD and the European Union: The Republic of Cyprus is recognised by all members of the United Nations with the exception 
of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus.

• Figure 9.2 •
Sample yield for the participating countries with CBA or PBA format
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Since the sample sizes changed greatly from country to country, the numbers of schools and the sample sizes from each 
school changed as well. As seen in Table 9.1, number of schools runs from 44 (Luxembourg) to 841 (Brazil). But most 
countries met the requirement for the number of schools (a minimum of 150 schools).

Classical test theory statistics: item analysis
Item analyses were conducted on all computer-based and paper-based testing items at both the national and international 
levels to identify outliers, as well as human- and machine-scoring issues and other technical issues with regard to the 
CBA-collected data. All descriptive statistics were provided for  observed responses as  well as  the various missing 
response codes and they were compared across modes and cluster positions for each item. Statistics were shared with 
countries and the OECD.

The following statistics were computed:

•	item difficulties (proportion of correct responses, or P+)

•	frequencies of  scores (number of  students attempted, correct and incorrect responses, omitted items, not-reached 
items)

•	cluster scores (that is the total score within a cluster) of students with specified response types for a given item
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•	point biserial correlations

•	response time information within each domain per item and item cluster were examined in the PISA 2015 main survey.

Proportion correct and missing rates of trend items were compared to results from all prior PISA cycles whenever they are 
relevant. Statistics were compiled separately for the paper-based and computer-based testing and also examined at the 
aggregate level across countries. The analyses were also performed separately for each country to identify outliers (single 
items that seem to work differently across assessment cycles and countries). Comparisons were made at a language-by-
country level, and irregular cases, such as outliers as well as cases with obvious scoring rule deviations, were identified.

The  PBA results included only paper-based student responses for  the core domains of  reading, mathematics and 
science (trend items only). The CBA results included computer-based student responses for the core domains of reading, 
mathematics and science (both trend and new items), as well as financial literacy and collaborative problem solving, 
where applicable. In addition, the results were disaggregated by language within a country (Note that une-heure (UH) 
booklet results are provided for countries where applicable).

Table 9.2 Example output for examining response distributions

Table 9.2 is an example of the response analysis output for a country using computer-based testing for the first three 
items in block/cluster M01. The first item, CM033Q01S, is the scored version of item CM033Q01 – a multiple-choice 
item. More details are given below for this item in the table.

The first column says CM033Q01S is the first item in the trend maths scale (TRN_MATH).

In the second column, the first is the number of the item in the list, which is 1. All others are statistics for the response 
types, which are in the first row, starting from the third cell. They are:

1.	 N = Number of responses for the given type

2.	 Percent = Percent of responses for the given type

3.	 Mean Score = Mean score of the cluster (TRN_MATH) for the given type

4.	 Std. Dev. = Standard deviation of the cluster (TRN_MATH) for the given type

5.	 RESP WT = Response weight for the given type.
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The response types are:

1.	 NOT RCH (not reached) = Students did not answer the given item nor the subsequent items within that cluster.

2.	 OFF TSK (off task) = Students did not answer the question in the expected manner.

3.	 OMIT (omit) = Students did not answer the given question but answered at least one subsequent question.

4.	 0 = Wrong responses.

5.	 1 = Correct responses.

The values in the TOTAL column (third to the last column) are based on all categories except “NOT RCH”. For example, 
for  Item 2, Total is  the sum of OMIT, 0 (Wrong) and 1 (Correct), i.e. 855 = 8 + 403 + 444, which does not include 
NOT RCH, whose value is 2.

The statistics shown in the last two columns of Table 9.2 are ETS-developed indices. They are:

1.	 R-biserial (R BIS) and R-polyserial (R POLY): R BIS is used for dichotomous items and is a statistic used to describe 
the relationship between performance on a single test item and a continuous criterion variable (total score on the 
cluster). It is an estimate of the correlation between the criterion cluster score and an unobserved normally-distributed 
variable assumed to determine performance on the observed categorical item score. R POLY is used for polytomous 
items and is a generalisation of the biserial correlation for use with either dichotomous or polytomous items. At ETS, 
it is the generalised form of the correlation with the criterion and the item score, where the item score is either (0, 1) 
or (0, 1, 2, 3….n) and the criterion is a continuous variable (total score on the cluster).

2.	 Point biserial (PT BIS) and Point-polyserial (PT POLY): PT BIS is used for dichotomous items and is the pearson product 
moment correlation coefficient between the dichotomous item score and the  total cluster score. For polytomous 
items PT POLY is used.

3.	 P+: This is the usual percent correct for a given item.

4.	 Delta: This statistic is an index of item difficulty associated with the percent correct (P+). The P+ values are converted 
to z-scores, and then linearly transformed to an expected value of 13.0 and a  standard deviation of 4.0. Deltas 
ordinarily range from 6.0 for a very easy item (approximately 95% correct) to 20.0 for a very hard item (approximately 
5% correct), with 13.0 corresponding to 50% correct.

5.	 Item WT: This value is the sum of RESP WT values of all response type except NOT RCH.

Table 9.3 provides an example of the breakdown of item score categories and biserial correlations by category as well 
as  a summary of  items that were flagged for  surpassing certain thresholds (the  thresholds are shown in  Table 9.4). 
In this example, the third item is flagged for having an omit rate of greater than 10%, which prompts that further review 
is needed.

Table 9.3 Example table providing summary item statistics
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Table 9.4 Flagging criteria for items in the item analyses

Magnitude Criteria for flagging items

min rbis/rpoly 0.3
min P+ 0.2
max P+ 0.9
Omit % greater than 10
Off task % greater than 10
Not-Reached % greater than 10

The delta statistic, polyserial correlation, and B* are part of the standard output from the software used for the classical 
item analysis; however, they may not be as familiar as other statistics such as P+, R-Bis, percent not reached, and percent 
of omitted responses. Countries were therefore advised to use the latter statistics when evaluating the quality of items 
for their sample.

The PISA 2015 computer delivery platform successfully delivered, captured, and exported information for more than 
900 items, with problems encountered in less than 1% of the items. Most of these items showed no obvious problems, 
yet there were a few items that had to be excluded from the analyses (in all countries/language groups) due to either 
almost no  response variance, technical issues or very low item total correlations. These excluded items are shown 
in Table 9.5.

Table 9.5 Items excluded from the IRT scaling based on classical item analyses or technical problems

Domain Item Mode of administration

Maths (1 item) CM192Q01 CBA

Science trend (7 item) S327Q02/DS327Q02C* PBA/CBA

PS456Q01S PBA

PS456Q02S PBA

PS133Q01S PBA

PS133Q03S PBA

PS133Q04S

Collaborative problem solving 
(4 items)

CC104104 CBA

CC104303 CBA

CC102208 CBA

CC105405 CBA

*Five of the listed science items were dropped based on FT performance and content review. The items were not administered in the Microsoft computer-based instruments but were 
included in the paper-based assessments, as the booklets had been prepared before the decision was made to exclude the items. These items were excluded from the IRT scaling and 
population modelling. One item (DS327Q02C) was excluded from the main survey analysis, as it was discovered it had been dropped from the international analysis in 2003 and 
therefore could not be considered a trend item. Coders were instructed not to code this item and it was not included in the IRT scaling and population modelling. However, these 
six should have impacted the timing information on the clusters that contain them.

Response time analyses

The computer-based platform captured response time information for all computer-based items. This information was 
used to compute the amount of time spent by the student on each item cluster at each cluster position within the spiral 
design. This information was also used to  examine within- and between-country differences in  response time and 
potential administration issues. The data for these analyses included item cluster response times and plausible values 
from the PISA 2015 main survey.

Detailed timing information is  one of  the two key features of  the computer delivery platform (obviously) not 
available in  paper-based assessments; another is  process sequence information. Response times are recorded 
for each item in milliseconds; hence, they allow for precise, timing-related analyses. For instance, these data can 
be used to identify rapid guessing (e.g. Wise and DeMars, 2005) and/or potential administration issues (e.g. groups 
of students who take substantively longer to complete the assessment than expected). Timing information can also 
be used to address issues of speediness and fatigue, between-country differences in allocated time, position effects, 
and interaction effects with variables such as student performance. Sequence information, on the other hand, can 
provide insights into how students progress through a set of  items, including the number of  times that an aspect 
or an item component is revisited, item sets that are skipped, and items that are truly not reached. Further, sequence 
information can be used in conjunction with the timing data to identify potentially problematic items, units, and/
or clusters.
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Timing and process data were successfully recorded for all data collections in the CBA countries in the field trial 
and the main survey. The available timing data were instrumental in evaluating the level of student engagement and 
effort over the course of the four 30-minute clusters in addition to identifying response time outliers. Very little time 
spend on the items/assessment was interpreted as low effort; too much time spend on the items/assessment could 
be an indication of technical problems or low ability. Results from the analyses indicate that the computer-based 
assessment data provides valid information that can be used to evaluate student performance within and across 
countries.

Outliers
Students were generally expected to complete each cluster within 30 minutes, but they had 60 minutes for the first two 
clusters and 60 minutes for the last two clusters with a break in between. In line with this expectation, an examination 
of  the data shows that students rarely exceeded this maximum time. This was the case in the vast majority of cases; 
however, it was possible for some students to take additional time on the first and third clusters and less time on the second 
and fourth clusters, respectively, as the clusters were administered in pairs – before and after the mid-test break given 
at the 60-minute mark. Response times were identified greater than 4.4478*(MAD) (MAD = median{|xi −  median(xj)|}, 
where {xi} is the collection of all sample values) above the sample mean within each cluster as outliers (Rousseeuw and 
Croux, 1993; Leys et al., 2013).

On average, 55 000 students took each cluster in  the assessment; about 850 of  them were labelled as outliers. Not 
surprisingly, all clusters have outliers. Table 9.6 shows the percentages of outliers by domain (science is split into science 
trend and science new).

Table 9.6 Percentage of response time outliers in domains of PISA 2015 Main Survey

Domain Mathematics Reading Science trend Science new CPS* FL**

Number of clusters 7 7 6 6 3 2
Percent of outliers 1.78% 1.89% 1.30% 1.21% 1.37% 2.49%

* CPS = Collaborative problem solving
** FL = Financial literacy
Note: Argentina, Malaysia, and Kazakhstan were not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).

Descriptive Statistics
Table 9.7 presents descriptive statistics for the item cluster response times, by domain, with outliers excluded. These 
values are aggregated across countries and cluster positions. On average, students completed the  items within each 
cluster in around 18 minutes, with 75% of the students completing the cluster in less than 22 minutes. With the outliers 
removed no student in any country took longer than 60 minutes to finish a given 30-minute cluster. Note that some 
variability in assessment time was expected as test administrators had to log off the computer-based assessment during 
the break one by one. Still, students who took close to one hour to complete a given 30-minute cluster would be unlikely 
to have had sufficient time to  finish the subsequent cluster with which it was paired. That is, for  the pair of clusters 
administered before or after the mid-test break, the use of up to 60 minutes for the first of the two clusters left no time 
to finish the second cluster. These long response times point to potential administration issues. On the other hand, there 
were also recorded cluster response times of less than one minute. It seems highly unlikely that a student could have 
completed a given cluster in under a minute; hence, this may indicate a technical problem with the data collection/time 
coding, or a breakoff, or input reflecting rapidly advancing through the items. It should be noted that 152 students had 
response times equal to 0 minutes due to technical issues (with 149 of these cases coming from Qatar); these values were 
excluded for all response time analyses.
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Table 9.7 Item cluster response time (in minutes) descriptive statistics

Domain Min Q1 Median Mean Q3 Max SD

Maths 0.95 13.53 17.38 17.40 21.25 36.93 5.88
Reading 0.81 13.47 17.09 17.18 20.86 36.79 5.78
Science trend 0.93 12.96 16.69 16.77 20.53 35.86 5.85
Science new 0.78 14.94 19.42 19.42 23.93 41.79 6.82
CPS* 3.04 19.24 22.52 22.77 26.18 42.14 5.62
FL** 1.17 14.77 19.28 19.12 23.82 38.70 6.56

* CPS = Collaborative problem solving.
** FL = Financial literacy.
Notes: Q1 is the 25th percentile and Q3 is the 75th percentile; all zero times were removed from the analyses. Argentina, Malaysia, and Kazakhstan were not included in this 
analysis due to adjudication issues (inadequate coverage of either population or construct).

The median item cluster response time is similar across all domains for all countries taking the computer-based testing 
with the exception of collaborative problem solving, which is 3-5 minutes longer than the other domains. The standard 
deviation is almost the same across all domains, with Science New and Financial Literacy items having slightly higher 
standard deviations.

To  address the  relationship between response time and student performance, median item response times grouped 
by proficiency levels were examined. Table 9.8 reports median response times by proficiency levels (both science and 
reading have Level 1a and 1b, instead of Level 1; both collaborative problem solving and financial literacy have only 
5 levels). It is evident that the least able students (Level 0) tended to complete a cluster in less time than other groups. 
Across all domains, more able students generally spent more time on each cluster. Except for collaborative problem 
solving, the differences between Level 0 students and the highest level students exceeded 7 minutes in all domains.

Table 9.8 Cluster level response time by PV1 proficiency level (min)

Below Level 1 Level 11 Level 2 Level 3 Level 4 Level 5 Level 6

Mathematics 12.53 15.02 17.01 18.58 19.53 19.69 19.30
Reading 9.95 12.50* 15.22 17.20 18.12 18.32 18.20 17.96
Science trend 10.53 12.45 14.75 16.69 17.78 18.01 17.88 17.47
Science new 11.33 13.39 16.32 19.26 21.04 21.80 21.95 21.84
CPS 19.41 21.34 23.29 23.77 23.67 N/A N/A
Financial literacy 14.88 19.38 21.33 22.52 23.17 N/A N/A

1. Reading and science have 1a and 1b on Level 1.
Note: Argentina, Malaysia, and Kazakhstan were not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).

Response time was not only explored at the cluster level but also at the item level. The median response time for all 
items are similar across all countries. Figure 9.3 illustrates the median time of items across all countries using the CPS 
domain as an example.

Figures 9.4  and 9.5  show the  median response time of  science trend items and science new items based on  the 
performance level across all countries (using weighted P+ and response times). The charts are sorted by the item response 
time. It can be seen that low performance students have almost identical response time patterns for both science trend 
items and science new items. The  interaction between response time and ability (PV1) by  items is  greater for  high 
performing students than for low performing students.

While the more able students generally need more time to complete the test, this is not true at the country level (see 
Figure 9.6). For example, Singapore has the highest average score in science, but its median response time is fairly close 
to the overall median time. Korea on the other hand has an unusually short median response time while its performance 
is relatively high.
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• Figure 9.3 •
Median response time by item – Collaborative problem solving
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• Figure 9.4 •
Median response time by PV1 proficiency level – Science trend items
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Note: Argentina, Malaysia, and Kazakhstan were not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).
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• Figure 9.5 •
Median response time by PV1 proficiency level – Science new items

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

C
S6

35
Q

05
T

C
S6

46
Q

04
T

C
S6

10
Q

01
T

C
S6

34
Q

03
T

C
S6

04
Q

04
T

C
S6

37
Q

05
T

C
S6

56
Q

02
T

C
S6

20
Q

04
T

C
S6

48
Q

01
T

C
S6

57
Q

04
T

C
S6

29
Q

01
T

C
S6

43
Q

04
T

C
S6

15
Q

07
T

C
S6

56
Q

04
T

C
S6

45
Q

04
T

C
S6

15
Q

01
T

C
S6

35
Q

01
T

C
S6

43
Q

02
T

C
S6

29
Q

03
T

C
S6

56
Q

01
T

C
S6

15
Q

02
T

C
S6

46
Q

02
T

C
S6

46
Q

01
T

C
S6

35
Q

02
T

C
S6

45
Q

01
T

C
S6

20
Q

02
T

C
S6

27
Q

01
T

C
S6

41
Q

03
T

C
S6

10
Q

04
T

C
S6

08
Q

01
T

C
S6

37
Q

02
T

C
S6

02
Q

01
T

C
S6

05
Q

03
T

C
S6

26
Q

01
T

C
S6

48
Q

03
T

C
S6

03
Q

01
T

C
S6

29
Q

04
T

C
S6

38
Q

05
T

C
S6

08
Q

03
T

C
S6

38
Q

04
T

C
S6

49
Q

04
T

C
S6

41
Q

02
T

C
S6

26
Q

03
T

C
S6

29
Q

02
T

C
S6

34
Q

04
T

C
S6

48
Q

02
T

C
S6

57
Q

03
T

C
S6

45
Q

03
T

C
S6

10
Q

02
T

M
in

ut
e

Level 0 Level 1b Level 5 Level 6

Note: Argentina, Malaysia, and Kazakhstan were not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).

• Figure 9.6 •
Median response time vs. country median score (PV1) – All science items (2 clusters)
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As part of this analysis, the within-country variability of response times was examined for all countries. Since science 
is the major domain for PISA 2015, with every student taking two clusters, results are presented for this domain only. 
Figure 9.7 shows the distribution of time spent on science for all countries sorted by their performance using the median 
of the first plausible value (PV1). The middle red solid dot is the median response time, and hollow triangles indicate 
the 25th and 75th percentiles of  the response time, respectively, for a given country. The grey horizontal bars range 
from the 10th percentile of the response time to the 90th percentile of the response time for a given country. The figure 
suggests that the within-country variability is quite similar across countries.

• Figure 9.7 •
Variability of time used in science
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Administration (and possible student motivation) issues

Results from the previous subsection suggest that there are few problematic patterns in the response times within and 
between countries. On average, students completed the  entire test in  77.97 minutes (SD = 20.36), with 1% of  the 
students across countries taking longer than 120 minutes to  complete the  test. Some variability in  assessment time 
was expected as test administrators had to log off the computer-based testing one by one. Students in Peru, Colombia, 
Thailand, and Tunisia took the longest median time to complete the test in 95.09, 90.12, 89.16, and 89.01 minutes, 
respectively. Students in Korea took the shortest median time to complete the test in 59.28 minutes (see Annex 9.C for 
more information on the country level).

There were five countries where 3% or more of the students exceeded the time limit: Tunisia (8.1%), Thailand (4.9%), 
United Arab Emirates (4.1%), Colombia (3.4%), and the Russian Federation (3.3%). On the other end of the distribution, 
1.3% of the students completed the four clusters of the test in less than 30 minutes. These students were found in nearly 
all countries. The results for the students with very long or short total response times suggest that there were no systematic 
administration and/or motivation issues in specific schools. That is, in general, these students appear to be randomly 
distributed across schools and countries.

Position effects
Item position effects are a common issue of concern in large-scale assessment programmes because substantial position 
effects can increase measurement error and introduce bias. The PISA 2015 main survey design balanced cluster position 
in order to control for the impact of item position and to monitor its impact of the item position on various item statistics. 
The cluster position effects were examined in terms of: 1) proportion of correct responses by cluster (average P+), 2) 
median response time by cluster and 3) rate of omitted responses by cluster (omission rate).

In order to establish a reference point for examining the magnitude of position effects, average P+ values were computed 
at the cluster level using both PISA 2009 and 2012 data. These values are shown in Table 9.9. We can see in this table 
that across the content domains there is a decrease of 0.04 to 0.08 points in the average P+ metric between cluster 
positions 1 and 4. For  the PISA 2015 main survey data (see Table 9.10), the decrease is  about 0.02  to 0.06 points 
in P+ values between cluster positions 1 and 4, which are smaller than the earlier cycles’ values.

Table 9.9 PISA 2009 and 2012 PBA proportion correct across clusters and across countries

Position 1 Position 2 Position 3 Position 4
Position 4 - 
Position 1

2009 Mathematics 0.411 0.402 0.385 0.371 -0.040
Reading 0.584 0.559 0.534 0.501 -0.083
Science 0.490 0.478 0.457 0.435 -0.055

2012 Mathematics 0.443 0.435 0.413 0.397 -0.046
Reading 0.595 0.561 0.551 0.512 -0.083
Science 0.526 0.515 0.493 0.468 -0.058

Note: Malaysia was not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).

Table 9.10 PISA 2015 CBA proportion correct across clusters and across countries

Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1*

Mathematics 0.426 0.416 0.411 0.403 -0.023
Reading 0.587 0.548 0.554 0.522 -0.065
Science trend 0.493 0.465 0.476 0.452 -0.042
Science new 0.459 0.428 0.445 0.415 -0.044
CPS 0.536 0.508 0.517 0.482 -0.054
FL 0.480 0.433 NA NA -0.047

* For financial literacy, the difference is taken between positions 1 and 2 because these instruments only had two clusters.

Note: Argentina, Malaysia, and Kazakhstan were not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).

Table 9.11 shows the median cluster time averaged over all clusters at each position for all five domains. There are 
notable drops in median response times for all students from the  first cluster to  the second (3-6 minutes) and from 
the third cluster to the fourth (2-5 minutes); however, increases in the median response times for cluster 2 to cluster 3 
(1-4 minutes) are relatively small compared to  the drops. In addition to a decrease in P+ values from position 1  to 
position 4 for the 2015 Main Survey data (6-10%), there is a notable decrease in the median response times (around 
4-6 minutes, i.e. nearly 20% reduction) for clusters administered in each of the four positions.
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Table 9.11 PISA 2015 CBA median cluster timing averaged across countries (in minutes)

Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1*

Mathematics 19.81 16.91 17.34 15.71 -4.10
Reading 20.01 16.16 17.48 15.36 -4.65
Science trend 19.75 15.26 17.67 14.76 -4.98
Science new 23.38 17.40 20.73 16.89 -6.49
CPS 25.96 20.59 24.48 19.98 -5.98
FL 23.03 17.69 NA NA -5.33

* For financial literacy, the difference is taken between positions 1 and 2 because these instruments only had two clusters.

Note: Argentina, Malaysia, and Kazakhstan were not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).

The omission rates at different positions for all countries using computer-based assessments were analysed to further 
examine the quality of data affected by position. The omission rates for the PISA 2015 main survey in all domains and 
cluster positions are shown in Table 9.12. These rates do not include ‘not reached’ items.

Table 9.12 PISA 2015 CBA omission  rates across clusters and across countries

Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1*

Mathematics 0.051 0.064 0.063 0.075 0.025
Reading 0.039 0.053 0.052 0.067 0.028
Science trend 0.029 0.046 0.038 0.052 0.023
Science new 0.027 0.039 0.035 0.045 0.018

FL 0.043 0.071 NA NA 0.029

* For financial literacy, the difference is taken between positions 1 and 2 because these instruments only had two clusters.

Note: Please note that Argentina, Malaysia, and Kazakhstan were not included in this analysis due to adjudication issues (inadequate coverage of either population or construct).

The omission rate for collaborative problem solving is 0% as students were forced to choose a response at each decision 
point in the tasks. Hence, omission rates for collaborative problem solving are not shown in the table.

Although no omission rate for any domain in any position exceeds 10%, the omission rates in Positions 2 and 4 are 
higher than those in Positions 1 and 3, respectively. Further, for reading, mathematics, and science, the omission rates 
in Position 3 are lower than those in Position 2, respectively. This is an indication that some students spent considerably 
more time on clusters 1 and 3, leaving them with less time for clusters 2 and 4.

THE IRT MODELS FOR SCALING

Moving from the Rasch model and partial credit model to the two-parameter logistic 
model and generalised partial credit model

The analysis of the PISA 2015 main survey data follows best practices outlined in, for example, Yamamoto and Mazzeo 
(1992), Mislevy and Sheehan (1987), Glas and Verhelst (1995), and Adams, Wilson, and Wu (1997). More recent 
overviews of the different aspects of the methodology can be found in von Davier, Sinharay, Oranje, and Beaton (2006), 
Glas and Jehangir (2014), Weeks, von Davier, and Yamamoto (2014), von Davier and Sinharay (2014), and Mazzeo and 
von Davier (2014). The methods used in PISA as well as other assessments are based on models originally developed 
within the framework of IRT that have evolved into very flexible approaches for the analysis of large-scale, multilevel 
categorical data (e.g., Skrondal and Rabe-Hesketh, 2004; von Davier and Yamamoto, 2007, 2004; Adams, Wu, and 
Carstensen, 2007).

In prior PISA cycles (2000-2012), the Rasch model (1960) and the partial credit model (PCM; Masters, 1982) were 
used to estimate item difficulty parameters (calibrate/scale the items). The Rasch model is a mathematical model for the 
probability that an individual will respond correctly to a particular item, given the individual’s location in a reference 
domain or dimension. The model postulates that the probability of response x to item i by a respondent depends on only 
two parameters, the difficulty of the item (ßi) and the respondent’s ability or trait level (θ), where

9.1

P xi = 1 θ, ßi =
exp θ − ßi

1 + exp θ − ßi
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The probability of a positive response (e.g. solving an item) is strictly monotonically increasing in θ and decreasing in ßi. 
If a respondent’s ability matches the item difficulty, the expected probability of a correct response is equal to .50. Stated 
differently, item difficulty under the Rasch model can be interpreted as the location along the ability continuum at which 
a person is just as likely to answer the item correctly or incorrectly.

The partial credit model is an extension of the Rasch model to model the probability of responses to items with more 
than two ordered response categories. For a comprehensive review of the Rasch model, please refer to Chapter 3 (von 
Davier, 2016) of the Handbook of Modern Item Response Theory (2nd Ed.) edited by van der Linden (2016). For a review 
of the partial credit model, please refer to Chapter 7 of the same volume (Masters, 2016). Alternatively, von Davier and 
Sinharay (2014) review the use of IRT models in the context of international comparative assessments.

Concerns over the  insufficiencies of  the Rasch model to  adequately address the  complexity of  the PISA data have 
been raised in the past (Oliveri and von Davier, 2011; Kreiner and Christensen, 2014, among others). Other national 
and international studies utilise more general IRT models (Mazzeo and von Davier, 2014; von Davier and Sinharay, 
2014). The National Assessment of Educational Progress (NAEP), for example, uses the three-parameter IRT model and 
the generalised partial credit model (GPCM; Allen, Donoghue, and Shoeps, 2001) as does the Trends in International 
Mathematics and Science Study (TIMSS) and the  Progress in  International Reading Literacy Study (PIRLS) (Martin, 
Gregory, and Stemler, 2000).

To address the concerns about usage of the Rasch model, PISA 2015 implemented the two-parameter-logistic model 
(2PLM; Birnbaum, 1968) for dichotomously scored responses and the generalised partial credit model (Muraki, 1992) 
for items with more than two ordered response categories.

The two-parameter logistic model is a generalisation of the Rasch model. Similar to the Rasch model, the 2PLM assumes 
that the probability of response x to item i by a respondent depends on the difference between the respondent’s proficiency 
θ and the difficulty of the item difficulty, ßi. But in addition, the two-parameter logistic model allows that for every item, 
the association between this difference and the response probability can depend on an additional item discrimination 
parameter (α i), characterising its sensitivity to  proficiency. Under the  two-parameter logistic model the  response 
probability to an item is given as a function of this person parameter and the two item parameters; and it can be written 
as follows: 

9.2

P xij = 1 θ, ßi, αi =
exp Dαi θ − ßi

1 +exp Dαi θ − ßi

where D is a constant of arbitrary size, often either 1.0 or 1.7, depending on the parameterisation used in the software 
implementation. Note that, for αi > 0.0 this is a monotone increasing function with respect to θ; that is, the conditional 
probability of a correct response increases as the value of θ increases. One important special case is when α i for all 
items, in which case the Rasch model can be recognised as a special case of the two-parameter logistic model. This 
means that the 2PLM does not force a difference from the Rasch model; it only differs from the model if the optimal 
estimates for the slope parameter are different across the items.

A  central assumption of  the Rasch model, the  two-parameter logistic model, and most IRT models is  conditional 
independence (sometimes referred to as local independence). Under this assumption, item response probabilities depend 
only on θ and the specified item parameters–there is no dependence on any demographic characteristics of the students, 
responses to any other items presented in a test, or the survey administration conditions. Moreover, the 2PLM assumes 
unidimensionality, that is, a single latent variable, θ, that accounts for performance on the full set of items. This enables 
the formulation of the following joint probability of a particular response pattern x = (x1, ..., xn) across a set of n items. 

9.3

P x θ, , α) =
n

∏
i =1

Pi θ xi 1 − Pi θ 1 − xiß
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When replacing the hypothetical response pattern with the scored observed data, the above function can be viewed as a 
likelihood function that is to be maximised with respect to the item parameters. To do this, it is assumed that students 
provide their answers independently of one another and that the student’s proficiencies are sampled from a distribution 
f(θ). The likelihood function is therefore characterised as

9.4

P(X , α) =
J

∏
j =1

∫

n

∏
i =1

Pi(θ )xi j(1 − Pi(θ ))1− xi j

))
f (θ )dθß

The item parameter estimates obtained by maximising this function are used in the subsequent analyses.

The generalised partial credit model (Muraki, 1992), like the two-parameter logistic model, is a mathematical model 
for responses to items with two or more ordered response categories. While the two-parameter logistic model is suitable 
for dichotomous responses only, the generalised partial credit model can be used with polytomous and dichotomous 
responses. The generalised partial credit model reduces to the two-parameter logistic model when applied to dichotomous 
responses. For an item i with mi + 1 ordered categories, the model equation of the generalised partial credit model can 
be written as:

9.5 

P(xi = k θ, i, αi, di) =
exp{∑ k

r =1 Dαi  θ − i + dir)( }
∑ mi

u=0 exp{∑ u
r =1 Dαi (θ − i + dir) }

ß
ß

ß

where di is the category threshold parameter.

The approach that was taken for the PISA 2015 analysis is a model that combines features of the Rasch model/partial 
credit model and the  two-parameter logistic model/generalised partial credit model. This more general model was 
applied to  the PISA 2015 field trial and main survey data. As a first step, the Rasch and partial credit models were 
applied to all trend items. The two-parameter logistic model or generalised partial credit model were used for items that 
showed poor fit to the Rasch model or partial credit model. Moreover, in order to account for cultural and language 
differences in  the multiple populations tested, procedures outlined in  Glas and Verhelst (1995), Yamamoto (1997), 
Glas and Jehangir (2014), as well as Oliveri and von Davier (2014, 2011) were applied. The specific procedure used 
for PISA 2015 is described below in more detail. Based on the research studies just cited, the approach can be expected 
to help to retain linking items across modes or to prior assessments that would otherwise be excluded from the trend 
measure (the more link items with good fit across groups, the more stable the link becomes).

In order to ensure that the IRT model used provides adequate fit to the observed data, different types of model checks 
are customarily applied. One of  these checks is  the evaluation of  differential item functioning (DIF), which checks 
to determine whether items are harder or easier for a particular group compared to other groups of equal or similar ability. 
While the item parameters were estimated, empirical conditional percentage-correct statistics were monitored across 
the samples to test for differential item functioning between countries. More precisely, for each item, the empirical item 
characteristic curves (ICC) for each country-by-language group were compared to the expected ICC, given an estimate 
of the item parameter based on the total sample. If the empirical item characteristic curves for a certain group differed 
noticeably from the  expected item characteristic curves, this would be  evidence of  differential item functioning. 
In order to examine the difference between the empirical and expected item characteristic curves, item fit statistics were 
calculated. More specifically, the approach for identifying differential item functioning in PISA 2015 is based on the 
mean deviation (MD) and the root mean square deviation (RMSD) fit statistics. Both measures quantify the magnitude 
and direction of deviations in  the observed data from the estimated item characteristic curves for each single item. 
While mean deviation is more sensitive to deviations of observed item difficulty parameters from the estimated item 
characteristic curves, the root mean square deviation is sensitive to the deviations of both the item difficulty parameters 
and item slope parameters. In contrast to other measures for the evaluation of model data fit, such as INFIT and OUTFIT 
measures under the Rasch model, the mean deviation and root mean square deviation indices are not affected by sample 
size. Moreover, mean deviation and root mean square deviation statistics are available for a range of IRT models, while 
INFIT and OUTFIT measures are typically only provided for the Rasch model.
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Group-specific item parameters (i.e. national item parameters) for  items exhibiting group-level differential item 
functioning in  the international calibration were estimated to  reduce potential bias introduced by  these deviations. 
This approach was favoured over dropping the group-specific item responses for these items from the analysis in order 
to retain the information from these responses. While the items with country differential item functioning treated in this 
way no longer contribute to the international set of comparable responses, they continue to contribute to the reduction 
of measurement uncertainty for the specific country-by-language group.

The software used for item calibration, mdltm (von Davier, 2005), implements an algorithm that monitored differential 
item functioning measures and that automatically generated a  suggested list of group-specific item treatments. This 
algorithm grouped similar deviations of  subgroups so  that unique parameters were assigned to  either an  individual 
country-by-language group or multiple country-by-language groups that showed the same level and direction of deviation.

Measurement invariance (mode fffect) model
Beginning in 2015, PISA became a computer-based assessment with a paper option for a small number of countries, 
while it was a paper-based asesssment with optional computer-based scales in prior cycles. To address possible effects 
associated with this change, a mode effect study was conducted in the PISA 2015 field trial. The goal was to examine 
whether tasks presented in  one mode (e.g. paper-based assessment) function differently when presented in  another 
mode (e.g. computer-based assessment). A detailed description of the study and the results can be found in the section 
Developing Common Scales for the Purpose of Trends below. A comparison of different IRT models (extensions of the 
two-parameter logistic model assuming different mode effect parameters) in the field trial showed that the best fitting 
model is  one that assumes item-specific mode effects for  a subset of  items, where items are affected differentially 
(i.e. some items could be more difficult, some could be at the same difficulty level, and some could become easier). This 
leads to a model that adds an item-specific effect for a subset of items to the difficulty parameter quantifying the item-
specific difficulty difference between assessment modes, namely

9.15 

P(X = 1|θ, αi, i, δm) =
exp(αiθ + i − 1{ i>I}δmi)

1 + exp(αiθ + i − 1{ i>I}δmi)
.ß

ß

ß

Please note that this model is described again in  the section Developing Common Scales for  the Purpose of Trends; 
to avoid confusion the same numbering (9.15) is used in both sections. The computer-based difficulties are indexed with 
reference to the paper mode (computer-based items are indexed j = I + 1... 2I and paper-based items i = 1... I. Then, 
difficulty parameters are decomposed into two components, that is, ßi = ßi+1 with an optional mode effect parameter dmj 
for j = i + I, while it is assumed that the slope αi = αi+1. This decomposition is formulated so the difficulties are shifted 
by some item-dependent amount associated with the item or item feature. For other items, we may further assume that 
dmi = 0 (e.g. items for which the response mode differs but does not have a significant effect). As will be discussed below, 
for most items, there is no mode effect, that is dmj = 0.

When the model given in equation (9.15) includes constraints across both modes on slope parameters, as well as potential 
constraints on the differential item functioning parameters dmi, this establishes a measurement invariance (e.g. Meredith, 
1993) IRT model that can be viewed as representing metric invariance. The more constraints of the type that dmj = 0 
we have, the more we approach a model with strong or scalar invariance. Note that we already assume the equality 
of means and variances of the latent variable within groups in both modes because it is assumed that students receiving 
the test in computer or paper mode are randomly selected from a single population.

Using this model (9.15), it was possible to identify a subset of items that showed mode effects in the field trial. To account 
for  these mode effects in  the main survey, different item parameters were estimated for  paired paper-based and 
computer-based items with substantive mode effects in the 2015 field trial; the paper-based and computer-based item 
parameters for items with no substantive mode effects were constrained to be the same (see National and International 
Item Calibration and Handling of item-by-country/language and item-by-mode interactions below for more information 
about the application of the IRT scaling approach to the PISA 2015 main survey data). This established an invariance 
model that assumes scalar or strong invariance for the majority of items and metric invariance for a minority of items 
for which difficulty differences were detected.
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LATENT REGRESSION MODEL AND POPULATION MODELLING

This section reviews the population (or conditioning) model – a combination of an IRT model and a latent regression 
model – employed in  the analyses of  the PISA data and explains the  multiple imputation or “plausible values” 
methodology that aims to increase the accuracy of the estimates of the multivariate proficiency distributions for various 
subpopulations and the population as a whole.

Individual test skills tests are concerned with accurately assessing the performance of individual students for the purposes 
of diagnosis, selection, or placement. The accuracy of these measurements can be improved (i.e. reducing the amount 
of measurement error) by increasing the number of items administered to the individual and that measure the same skill. 
Thus, individual achievement tests containing more than 70 items are common. Because the uncertainty associated with 
each estimated proficiency θ is negligible, the distribution of proficiency or the joint distribution of proficiency with other 
variables can be approximated using individual proficiency estimates. When analysing the distribution of proficiencies 
for populations or subpopulations, more efficient estimates can be obtained from a matrix-sampling design.

In International Large Scale Assessments (ILSAs) such as PISA, test forms are kept relatively short to minimise individuals’ 
response burden. This is important since International Large Scale Assessments are low-stakes assessments that do not 
provide feedback and do not entail consequences of any sort for the individual test taker. At the same time, International 
Large Scale Assessments aim to  achieve broad coverage of  the tested constructs. The  full set of  items is  organised 
into different, but linked, test forms; each individual receives only one booklet. Thus, the  survey solicits relatively 
few responses from each student on any one domain while maintaining a wide range of content representation when 
responses are aggregated. The advantage of estimating population characteristics more efficiently is offset by the inability 
to reliably measure and make precise statements about individuals’ performance on a single domain. As a consequence, 
point estimates of proficiency that are (in some sense) optimal for each student could lead to seriously biased estimates 
of population characteristics (Wingersky, Kaplan, and Beaton, 1987). In the case of International Large Scale Assessments, 
improved proficiency distributions are derived that are based on  both the (small) number of  responses to  items 
in  the booklet and responses to  background questions administered in  the PISA student questionnaire. In  addition, 
the covariance between skill domains (e.g. the PISA core domains mathematics, reading and science) is utilised to further 
improve the estimates of skill distributions. This approach allows estimation of proficiency distributions given responses 
to  all domains received in  the test booklet and the  student questionnaire. The “plausible value” methodology uses 
these proficiency distributions and accounts for error (or uncertainty) at the individual level by using multiple imputed 
proficiency values (plausible values) rather than assuming that this type of uncertainty is zero. Retaining this component 
of uncertainty requires that additional analysis procedures be used to estimate student proficiencies.

The population model used for PISA 2015 incorporated test responses (responses to the test items) as well as variables 
measured by the student context questionnaire (e.g. academic and nonacademic activities, and attitudes), which serve 
as covariates, in the computation of plausible values (von Davier, Sinharay, Oranje, and Beaton, 2006). For each student, 
10 plausible values are computed. The combined model requires the estimation of the IRT measurement model, which 
provides information about test performance, and the latent regression, which provides information about the extent 
to which student background information can predict proficiency. The estimation of this combined model is carried out 
as follows:

1.	 Item calibration based on IRT (scaling): The responses consist of dichotomously and polytomously scored values. 
These responses are used to calibrate the  test and provide item parameter estimates for  the test items. The  two-
parameter logistic model is fitted for dichotomous item responses and the generalised partial credit model is fitted 
for polytomous item responses. Note that for a subset of trend items, the Rasch model and the partial credit model 
continue to be fitted for dichotomous and polytomous responses, respectively, to maintain consistency with prior 
PISA cycles.

2.	 Population modelling using latent regressions and plausible value generation: The population model assumes that 
item parameters are fixed at  the values obtained in  the calibration stage. Taking the  item parameters estimates 
from Step 1, a latent regression model is fitted to the data to obtain regression weights (Γ) and a residual variance-
covariance matrix for the latent regression (Σ). Next, 10 plausible values (Mislevy and Sheehan, 1987; von Davier, 
Gonzalez and Mislevy, 2009) are drawn for all students using the item parameter estimates from the item calibration 
stage and the estimates of Γ and Σ from the latent regression model.
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3.	 Variance estimation: To obtain a variance estimate for  the proficiency means of each country and other statistics 
of  interest, a  replication approach (see Johnson, 1989; Johnson and Rust, 1992; Rust, 2014) is used to estimate 
the sampling variability as well as the imputation variance associated with the plausible values.

As stated above, the population model used for PISA is a combination of the IRT model and a latent regression model. 
In  the latent regression model, the distribution of  the proficiency variable θ  is assumed to depend on  the test item 
responses X, as well as background variables, Y, derived from responses obtained from the context questionnaire (e.g. 
gender, country of birth, reading practices, etc.). The item parameters from the calibration stage and the estimates from 
the regression analysis are both needed to generate plausible values.

A considerable number of background variables (predictors) are usually collected in International Large Scale Assessments. 
Principal components accounting for a large proportion of  the variation in  the context questionnaire variables were 
used in the latent regression instead of  the observed context questionnaire variables. For PISA it was decided to use 
the components for each country that accounted for 80% of the variance in order to avoid numerical instability due 
to  potential overparameterization of  the model. The  use of  principal components also serves to  retain information 
for students with missing responses to one or more background variables. For the regression of the background variables 
on the proficiency variable it is assumed that:

9.6 

θ ~ N (yΓ, ∑)

The  latent regression parameters Γ  and Σ  are estimated conditional on  the previously determined item parameter 
estimates (from the item calibration stage). Γ is the matrix of regression coefficients and Σ is a common residual variance-
covariance matrix.

The latent regression model of Θ on Y with Γ = (¡sl, s = 1,…,S; 1 = 0,…,L), Y = (1, y1, …, yL)
t, and Θ = (θ1, …, θS)

t can 
be described as follows:

9.7 

θs = γs0 + γs1y1 + … + γsLyL + εs

where εs is an error term for the assessment skill s.

The residual variance-covariance matrix can then be estimated using the following equation: 

9.8 

Σ = ΘΘt – Γ(YYt)Γt
Plausible values for each student j are drawn from the conditional distribution: 

9.9 

P(θj|xj, yj, Γ, Σ)
Using standard rules of probability, the conditional probability of proficiency can be represented as follows:

9.10 

P θj xj, yj,Γ,Σ ∝ P xj θj, yj,Γ,Σ P θj yj,Γ,Σ   = P xj θj P θj yj,Γ,Σ

where θj is a vector of scale values (these values correspond to performance on each of the skills), P(xj|θj) is the product 
over the  scales of  the independent likelihoods induced by  responses to  items within each scale, and P(θj|yj, Γ, Σ) 
is the multivariate joint density of proficiencies of the scales, conditional on the principal components yj derived from 
background responses, and parameters Γ and Σ. The item parameters are fixed and regarded as population values in the 
computation described in this section.
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The basic method for estimating Γ and Σ using the expectation-maximization (EM) algorithm is described in Mislevy 
(1985) for  the single scale case. The expectation-maximization algorithm requires the computation of  the mean and 
variance of the posterior distribution in the equation above.

After the estimation of Γ and Σ is complete, plausible values are drawn from the joint distribution of the values of Γ 
for all sampled students in a three-step process. First, a value of Γ is drawn from a normal approximation to P(Γ,Σ|xj,yj) 
that fixes Σ at the value Σ (Thomas, 1993). Second, conditional on  the generated value of Γ (and the  fixed value of 
Σ = Σ), the mean mj

p
, and variance Σj

p
 of  the posterior distribution are computed using the  same methods applied 

in the expectation-maximization algorithm. In the third step, the θ are drawn independently from a multivariate normal 
distribution with mean vector mj

p
 and posterior co-variance matrix Σj

p
. These three steps were repeated 10  times, 

producing 10 imputations of θ for each sampled student.

The software DGROUP (Rogers et al. 2006) was used to estimate the latent regression model and generate plausible 
values (von Davier, Sinharay, Oranje, and Beaton, 2006; von Davier and Sinharay, 2014). A multidimensional variant 
of the latent regression model based on Laplace approximation (Thomas, 1993) was applied as PISA reports proficiencies 
on more than two skill dimensions.

ANALYSIS OF DATA WITH PLAUSIBLE VALUES

if  the scale proficiency values θ were known for all students, it would be possible to directly compute any statistic 
t(θ,y), for example, a scale or composite subpopulation sample mean, a sample percentile point, or a sample regression 
coefficient to estimate a corresponding population quantity T.

However, because the scaling models are latent variable models, θ values are not observed. To overcome this problem, 
we follow the approach taken by Rubin (1987) and treat θ as “missing” data. The value t(θ,y) is approximated by its 
expectation given the observed data, (x,y), as follows:

9.11 

t* x̄, ȳ =  E t( θ̄, ȳ) x̄, ȳ   = t θ̄, p θ̄ x̄, ȳ dθ

It is possible to approximate t* using plausible values (also referred to as imputations) instead of the unobserved θ values. 
Plausible values are random draws from the conditional distribution of the scale proficiencies given the item responses xj, 
background variables yj, and model parameters. For any student, the value of θ used in the computation of t is replaced 
by a randomly selected value from the student’s conditional distribution. Rubin (1987) argues that this process should 
be repeated several times so that the uncertainty associated with imputation can be quantified. For example, the average 
of multiple estimates of t, each computed from a different set of plausible values, is a numerical approximation of t* 
in the above equation; the variance among them reflects uncertainty due to not observing θ. It should be noted that this 
variance does not include any variability due to sampling from the population.

It cannot be emphasised too strongly that the plausible values are not a substitute for test scores for individuals. Plausible 
values incorporate responses to test items and information about the background of responses; therefore, they cannot 
be used to compare individuals. Plausible values are only intermediary computations in the calculation of the integrals 
in the above equation in order to estimate population characteristics such as subgroup means and standard deviations. 
When the  underlying model is  correctly specified, plausible values will provide consistent estimates of  population 
characteristics, even though they are not generally unbiased estimates of the proficiencies of the individuals with whom 
they are associated (von Davier, Gonzalez and Mislevy, 2009, provided examples and a more detailed explanation). 
The  key idea lies in  a contrast between plausible values and the  more familiar ability estimates of  educational 
measurement that are, in a sense, optimal for each student (e.g. bias corrected maximum likelihood estimates, which 
are consistent estimates of a student’s proficiency θ, and Bayesian estimates, which provide minimum mean-squared 
errors with respect to a reference population). Point estimates that are optimal for individual students have distributions 
that can produce decidedly non-optimal (inconsistent) estimates of population characteristics (Little and Rubin, 1983). 
Plausible values, on the other hand, are constructed explicitly to provide consistent estimates of population effects. For a 
further discussion of plausible values, see Mislevy et al. (1992).
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After obtaining the 10 plausible values from the posterior distribution, they can be employed to evaluate equation (9.11) 
for an arbitrary function T as follows:

1.	 Use the first vector of plausible values (out of ten) for each student, calculate T as if the plausible values were the true 
values of θ. Denote the result T1.

2.	 In the same manner as in step 1 above, estimate the sampling variance of T, or Var(T1,), with respect to students’ first 
vectors of plausible values. Denote the result Var1.

3.	 Carry out steps 1 and 2 for each of the U vectors of plausible values (in PISA 2015 U=10), thus obtaining Tu and Varu 
for u = 2, . . .,U.

4.	 The best estimate of T obtainable from the plausible values is the average of the U values obtained from the different 
sets of plausible values:

9.12 

T . =
∑ U

u=1 Tu

U

5.	 An estimate of  the variance of T is  the sum of  two components: an  estimate of Varu obtained as  in step 4  and 
the variance among the Tus:

9.13 

Var T . =
∑U

u=1 Varu

U
+ 1 +

1
U

∑U
u=1 Tu − T . 2

U − 1

The first component in Var(T.) reflects uncertainty due to sampling from the population; the second component reflects 
uncertainty due to measurement error, in other words because the students’ proficiencies θ are only indirectly observed 
through the item responses x and the background variables y.

Example for partitioning the estimated error variance:

The following example illustrates the use of plausible values in one particular country for partitioning the error variance. 
Tables 9.13 through 9.15 present data for six subgroups of students differing in the context questionnaire variable “books 
at home” (variable ST013Q01TA: 1 = 0-10 books; 2 = 11-25 books; 3 = 26-100 books; 4 = 101-200 books; 5 = 201-500 
books; 6 = more than 500 books). Ten plausible values were calculated for each student in the science domain. Each 
column in this table presents the means of these 10 plausible values and the sampling standard error for each subgroup 
defined by the variable ST013Q01TA.

Table 9.13 Example for use of plausible values to partitioning the error

Plausible 
value

1 2 3 4 5 6

Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.)
1 429.16 3.51 473.20 3.19 512.84 2.32 538.82 2.74 559.98 2.93 547.44 4.79
2 429.91 3.38 474.43 3.24 512.68 2.42 539.22 2.63 559.50 3.09 546.99 4.75
3 429.99 3.57 474.13 3.22 513.51 2.40 537.97 2.65 561.92 2.94 546.52 4.44
4 429.34 3.39 475.64 3.35 513.31 2.41 538.97 2.45 559.42 3.01 545.47 4.97
5 429.87 3.42 473.92 3.24 512.92 2.42 539.68 2.54 559.51 3.04 546.58 4.75
6 429.04 3.25 474.58 3.34 513.29 2.43 536.60 2.59 562.07 3.05 546.57 4.66
7 429.35 3.54 474.59 3.35 513.04 2.40 539.21 2.67 559.83 3.05 546.16 4.94
8 429.21 3.41 475.42 3.17 512.85 2.51 541.71 2.60 560.24 3.05 546.25 4.71
9 428.76 3.42 473.17 3.10 512.36 2.36 537.66 2.92 559.86 3.19 547.96 4.64
10 429.50 3.43 473.77 3.04 512.25 2.35 538.45 2.64 560.68 3.04 547.98 4.90

Table 9.14
Example for use of plausible values to partitioning the error – sample error, measurement error, 
and standard error based on the 10 PVs

ST013Q01TA Mean of 10 PVs Samplingerror Measurement error Standard error

1 429.41 3.43 0.43 3.46
2 474.29 3.23 0.87 3.34
3 512.90 2.40 0.42 2.44
4 538.83 2.64 1.42 3.00
5 560.30 3.04 1.02 3.20
6 512.90 2.40 0.42 2.44
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The standard error reflects a component of error associated with the lack of precision of the measurement instrument and 
a component of error associated with sampling. The standard error can be reduced by either increasing the precision 
of  the measurement instrument (for  example, increasing the  number of  items) or  reducing the  sampling error. 
A resampling method is used to estimate the variance due to sampling. This component of variance is similar across 
the 10 plausible values; the size is influenced by the homogeneity of proficiencies among students in the subgroup 
or by the precision of the survey instruments. The sampling error is smaller when the subgroup consists of students with 
similar proficiencies.

APPLICATION OF IRT AND POPULATION MODELS TO PISA

This section describes the implementation of the different steps of IRT and population modelling using the PISA main 
survey data. First, the national and international item calibration is described. Then the implementation of the population 
model and the computation of plausible values are described. More specifically, the procedures utilised for the linking, 
with the aim to obtain equivalent scales, are illustrated. It is also described how common scales were developed for the 
purpose of trends and an overview of the linking design and linking error is given.

Scaling and analyses of  the PISA data were carried out separately for  each of  the domains: reading, mathematics, 
science, financial literacy and collaborative problem solving. By creating a separate scale for each domain, it remains 
possible to explore potential differences in subpopulation performance across these skills. The population model was 
then carried out separately for each country.

National and international item calibration

Item calibration is  the first step in  population modelling and provides the  item parameters for  the test items that 
are needed as one of  the inputs for  the population model used to calculate the plausible values. All analyses were 
carried out using the software mdltm (von Davier, 2005) for multidimensional discrete latent traits models. The software 
provides marginal maximum likelihood estimates obtained using customary expectation maximisation methods, with 
optional acceleration. Trend items were initially calibrated using the Rasch Model (Rasch, 1960) for dichotomous data 
and the partial credit model (Masters, 1982) for polytomous data by fixing the slope (a) parameters to 1. Item fit was 
examined for all country-by-language-by cycle groups using a concurrent calibration. In cases of item misfit (root mean 
square deviation and mean deviation), the fixation of the slope parameters was released and the two-parameter logistic 
model (Birnbaum, 1968) for dichotomous data or the generalised partial credit model (Muraki, 1992) for polytomous 
data were estimated. In  the case of new items the  two-parameter logistic model and the generalised partial credit 
model were used for calibration. The result of the calibration is that all item parameters in each domain are located 
on a common scale.

Omitted responses prior to a valid response are treated as incorrect responses; whereas, omitted responses at the end 
of  each of  the two one-hour test sessions in both paper-based and computer-based assessments are treated as not 
reached/not administered. In the latter case, these responses have no impact on the IRT scaling. However, the number 
of  not-reached items was introduced as  a covariate in  the latent regression model, so  it is  part of  the proficiency 
estimation in  the generation of  plausible values (see sections Population Modelling in  PISA  2015 and Generating 
Plausible Values).

In total 83 maths items (83 items in the paper-based and 82 in the computer-based assessments), 103 reading items 
(in both paper- and computer-based assessments), 85 science items (in both paper- and computer-based assessments) 
and 43 financial literacy items (in the computer-based assessments only) were used as linking items between PISA 2015 
and past PISA cycles. In addition, the PISA 2015 main survey contained 99 new science items and 121 collaborative 
problem solving items. Each domain was calibrated separately with a unidimensional IRT model. The item calibration 
included historical PISA data (PISA  2006-2012) in  addition to  the 2015 PISA data. This was done for  the purpose 
of producing a  linked scale for  trend measurement reaching back to  the last major domain cycle (in science 2006). 
Table 9.15 provides an overview of  the distribution of  the test items across the different PISA cycles and assessment 
modes (paper-based, computer-based) used for the calibration of PISA 2015.
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Table 9.15
Distribution of the test items across PISA cycles and assessment modes by domain used in PISA 2015 
item calibration (main survey)

2006 
only

2009 
only

2012 
only

2015 
only

Items linked 
through
2 cycles

Items linked 
through
3 cycles

Items linked 
through
4 cycles

Total items 
in calibration 
across cycles

Total items 
in calibration 
across modes

Mathematics
PBA 12 – 26 – 52 2 30 122

82
CBA – – – 82 – – – 82

Reading
PBA – 30 – – 36 64 3 133

103
CBA – – – 103 – – – 103

Science trend
PBA 23 – – 5 27 – 53 108

85
CBA – – – 85 – – – 85

Science new CBA – – – 99 – – – 99 NA

Note: Each item is counted only once to avoid duplication.

Altogether, data from 536 177 students for reading, mathematics, and science; 140 074 students for financial literacy; 
and 418 808 students for collaborative problem solving were available for the PISA 2015 international IRT calibration 
together with PISA data coming from past PISA cycles (2006-2012)1. During the  item calibration, sample weights 
standardised to represent each country equally were used.

As the samples for each PISA cycle came from somewhat different populations with different characteristics, the calibration 
procedure needed to take into account the possibility of any systematic interaction between the samples and the items 
that were used to produce estimates of the item parameters and sample distributions. For this reason, a multiple-group 
IRT model using country-by-language groups over different cycles and assessment modes was estimated using a mixture 
of  normal population distributions (one for  each sample) where item parameters were generally constrained to  be 
equal across groups with a unique mean and variance for each country (concurrent calibration). The moments of these 
distributions were updated for every step in the iterations of the item parameter estimation.

The item calibration was completed in two consecutive steps. First, the data from all participating countries in 2015 and 
from the 2006-2012 cycles were analysed in an international calibration under the assumption that the common item 
parameters are the same across all countries and administration cycles. To account for mode effects for a subset of items 
identified in the PISA 215 field trial mode effect study, different item parameters were estimated for the paired paper- and 
computer-based assessments; the item parameters for items in which no mode effects were found were constrained to be 
the same between the paper-based assessments and computer-based assessments.

In the subsequent step, unique item parameters were estimated to account for specific deviations for a subset of items. 
This involved a close monitoring of the IRT scaling for item-by-group interactions (group refers to country-by-language-
by-cycle groups across modes) and allowing group-specific item parameters only in instances where deviations were 
identified. The following section describes this scaling step and the handling of item deviations from the model in more 
detail.

Handling of item-by-country/language and item-by-mode interactions
Given that international assessments are translated into multiple target languages, item-by-country interactions are 
a  potential threat to  validity (e.g. some terms may be  harder to  translate into a  specific target language. As  such, 
some items in some countries or country-by-language groups may function somewhat differently from how the item 
generally functions in the majority of countries or groups. The same issue occurs when changing modes from a paper- 
to computer-based assessment or when comparing items across different assessment cycles over years. Some items may 
function differently in different assessment modes or in different cycles. For this reason, an analysis step was added that 
investigates item-by-country, item-by-cycle, and item-by-mode interactions, to  identify cases in  which an  item may 
exhibit such deviant functioning in one or more groups.

The consistency of item parameter estimates across groups and countries was of particular interest to achieve common 
and unbiased measures of proficiencies that are comparable across countries, assessment modes, and assessments over 
time. If a test measures the same latent trait in a given domain in all groups, the items should have the same relative 
difficulty or, more precisely, would fall within the interval defined by the standard error on the item parameter estimate 
(i.e. the confidence interval). In cases where common item parameters are not appropriate for certain items in certain 
groups (item-by-country, item-by-mode, or item-by-cycle interactions) as determined by group-specific item-fit statistics 
(mean deviation, MD; and root mean square deviation, RMSD), unique item parameters were estimated in a stepwise 
procedure. By allowing unique item parameters for items that show item-by-group interactions – in contrast to excluding 
such items, or forcing a common parameter – the measurement error is reduced without introducing bias. This approach 



9
SCALING PISA COGNITIVE DATA

PISA 2012 TECHNICAL REPORT  © OECD 2014 167

follows best practices described in  the research literature on  IRT and item fit assessment (Glas and Verhelst, 1995; 
Yamamoto, 1997; Oliveri and von Davier, 2014, 2011; Glas and Jehangir, 2014).

An algorithmic approach that automatically identified those group-by-item combinations requiring unique parameters 
based on differential item functioning detection was applied. Items not exhibiting appropriate fit using an international/
common parameter received a group-specific parameter. However, if more than one group deviated from the international/
common parameters in the same way (that is they showed similar differential item functioning), the algorithm assigned 
item parameters such that multiple groups share the same parameters, while differing from the international parameter 
estimate. For example, if two groups (e.g. two countries, or the same country in two PISA cycles) showed poor item fit 
for the same item in the international/common calibration, and in the same direction, both groups received the same 
unique item parameter estimated for these two groups (note that the term “unique item parameters” in this report is used 
for both cases: one group that receives a unique group-specific item parameter, and more than one group that receive 
the same unique item parameter that is different from the international/common item parameter). If an item showed 
poor fit to a different extent in different groups, unique group-specific item parameters were used for further analysis. 
Thus, PISA allowed for different sets of item parameters to improve model fit and optimise the comparability of groups 
and countries.

To identify ill-fitting items, fit statistics were estimated using the mean deviation and the root mean square deviation 
(see The IRT models for scaling below for more information on these statistics). Poorly fitting items were revealed using 
a root mean square deviation > 0.12 criterion and an mean deviation > 0.12 and < -.12 criterion (a value of 0 indicates 
no discrepancy; in other words, a perfect fit of the model). The identification of poor fitting items and the replacement 
of international item parameters with group-specific (unique) parameters was carried out using an automatic algorithm 
in mdltm. Thus, the international and national calibrations were conducted simultaneously for all groups so all of the 
estimated item parameters (international and unique) are located on one common scale.

In most cases, the item responses across groups and countries were accurately described by the international/common 
item parameters. For  a subset of  items, there was evidence of misfit for  certain samples; however, this pattern was 
not consistent for any one particular group or country. Given this estimation and optimization approach, only a few 
items were dropped from the analysis in the PISA 2015 main survey. In all other cases, unique item parameters were 
estimated for  items with substantial deviations from the  international/common item parameters (poor fitting items). 
Figure 9.8 illustrates how the data from one group might not support the use of international item parameters.

• Figure 9.8 •

Item response curve for an item where the international item parameter is not appropriate 
for one group (example from a different ILSA)
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The solid black line is the fitted two-parameter logistic item response curve that corresponds to the international item 
parameters; the other lines are observed proportions of correct responses at various points along the proficiency scale 
for  the data from each subpopulation. The  horizontal axis represents the  proficiency scale. This plot indicates that 
the observed proportions of correct responses, given the proficiency, are quite similar for most countries and agree well 
with the IRT model-based curve. However, the data for one country indicated by the yellow line shows a noticeable 
departure from the common item characteristic curve. This item is far more difficult in that particular country, conditional 
on proficiency level. Thus, a unique set of item parameters was estimated for this country for this item.

Typically, only a small number of unique item parameters are assigned. The vast majority of items are expected to fit well 
for all, or nearly all, countries using international/common item parameters. Chapter 12 provides an overview of the 
percentage of group-specific item parameters per country.

Mode effect study in the 2015 field trial: identifying items with mode effects

To evaluate the stability of the link between paper- and computer-based assessments, a mode effect study was conducted 
with the PISA 2015fField trial data where every country that later adopted a computer-based assessment in the main 
survey administered all trend items in both modes, thereby enabling a direct comparison between paper- and computer 
based assessment item parameters. The term “mode effect” refers to the observation that tasks presented in one mode 
(for example, paper-based) may function differently when presented in another mode (computer-based).

This section will first present a  summary of  the findings of  the mode effect study and then illustrate in more detail 
the different approaches that were tested. In addition to some initial explorations (graphical model tests, correlations) 
of  the similarity of  item parameters across all domains, different formal conceptualisations of a “mode effect” were 
evaluated through statistical models (IRT model extensions) that contain parameters to quantify and compare potential 
differences between paper-based and computer-based assessments in  an objective manner. This is  followed by  a 
description of how the best fitting model can be used to account and adjust for potential mode effects.

Mode effect analyses and scaling approach for the main survey

The  mode effect study conducted in  the PISA  2015 field trial showed that within mode, the  item parameters are 
consistent across countries (and over time). Moreover, high correlations between item parameters across modes for all 
domains (0.94) was found. These findings indicate that the assessments administered in the two modes measure the same 
constructs. In  the study with extended item response models that include different types of mode effect parameters, 
it was shown that the majority of  items exhibit scalar or  strong measurement invariance, while the  remaining items 
exhibit metric invariance. Thus, a sound statistical link can be established, meaning computer-based and paper-based 
countries’ results can be reported on the same scales for 2015 and inferences about the scales are comparable.

For the subset of items with evidence of metric, but not scalar invariance, this meant that some items were somewhat 
harder while others were easier when delivered on the computer. That is, even among the subgroup that was identified 
and not fully invariant, the direction of the mode effect was not uniform. This finding discounted the hypothesis of a 
uniform mode effect that would somehow allow an overall scale adjustment.

For the subset of items that showed a difference of difficulty parameters between modes, separate item difficulties were 
calculated by mode. Slope parameters were the same across computer- and paper-based assessment modes.

Trend items that showed mode effects were identified in the field trial mode effect study. These items were re-examined 
in  the Main Survey using population specific item-fit statistics (root means square deviation, mean deviation) in  a 
concurrent calibration to confirm that the same invariance model can be applied to the main survey data. The items 
identified as exhibiting metric invariance were treated with mode-specific item difficulty parameters. Thus, possible 
mode effects are unlikely to impact the proficiency estimation, as the link between modes and cycles is established on a 
large number of trend items that show scalar (strong) invariance.

Chapter 12 provides information about which trend items are scalar invariant, sharing all characteristics across modes, 
and which items are partially or metric invariant, sharing a common slope parameter.
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Graphical Model Tests and Correlations

The comparison of mode differences in the current section is based on an approach that was first described by Rasch 
(1960). Parameter invariance across groups can be examined by applying the same identification constraints, and then 
estimating the parameters of a model in these groups separately and evaluating the level of agreement among the two 
sets of parameters. This “graphical model test” is useful to spot systematic differences between modes of administration, 
but it provides less statistical rigor than other model-based approaches. A graphical model test was conducted as a 
first step to examine the overall agreement of parameters of items administered in both modes and to explore potential 
drivers of  any differences; the  IRT models presented later (IRT models to assess measurement invariance and mode 
differences) were used to evaluate mode differences with a higher level of statistical rigor.

The PISA 2015 field trial incorporated an equivalent groups design that was implemented to aid the  transition from 
paper- to computer-based assessment. This means that students were sampled in each country from a number of schools 
and then assigned randomly to one of two treatment conditions, taking the PISA field trial instruments on the computer 
or on paper. They were assigned independent of proficiency, prior experience, or other student variables.

This equivalent groups design allowed us to test the null hypothesis of “no mode effect”. The comparison was based 
on estimating parameters for the computer-based assessment mode and comparing them with parameters obtained from 
the (smaller) paper-based field trial sample, which was strengthened by combining it with data from prior paper-based 
PISA assessments ranging the 2000-2012 cycles. Due to the random assignment of students to modes, the underlying 
ability distributions of  the paper- and computer-based field trial samples are assumed to  be identical. As  such, 
the computer-based parameters should not differ significantly, or systematically, from the parameters obtained in the 
2000-2012 reanalysis (see Developing Common Scales for the Purpose of Trends below) and verified using the paper-
based field trial sample.

The following figures (Figure 9.9-9.10) show parameter comparisons between the mode-based samples. The IRT analyses 
for estimating these parameters are based on data from 68 field trial countries that submitted their data through November 
2014 (reading, mathematics, and science: n = 150,983; financial literacy: n = 34,443).

Note that the paper-based item parameters were taken from the PISA 2000-2012 linking study that aimed at  finding 
common parameters across five cycles of historical PISA data, and derived under the guiding principle of  retaining 
as  many Rasch model-based parameters as  possible. More precisely, the  paper-based item parameters were fixed 
to the estimates obtained from the linking study (where there were only paper-based assessment items), while the item 
parameters for the computer-based items were freely estimated (but constrained to be equal across countries). This was 
done simultaneously in the software mdltm (when fixing item parameters in a calibration, no additional constraints are 
needed since the fixation of parameters already takes care of the indeterminacy of the scale). Therefore, the paper-based 
set contains a number of slope values that are not estimated but fixed to 1 (retained Rasch Model items), which produces 
fewer pairs of freely estimated parameters. However, the difficulty parameters can be compared for all items that were 
administered in paper- and computer-based modes.

The  distinction among the  domains of  reading, mathematics and science, as  well as  financial literacy was ignored 
because the parameters obtained across modes appeared to vary consistently across all domains.

These figures provide evidence of overall general agreement between the parameters based on the paper- and computer-
based assessment modes. While there are differences, it appears that the level of difficulty of an item remains largely 
the same between paper-based parameters – based on historical data – and computer-based estimates. The same holds 
for the freely estimated slope parameters.

Moreover, correlations between the difficulty parameters for paper- and computer-based trend items are high within each 
domain, ranging from 0.92 to 0.95; the correlations between the discrimination parameters (slopes) range from 0.90 to 
0.94 (note that only the two-parameter-logistic-model-based slopes were used to calculate correlations). The correlation 
of item difficulty parameters across modes and domains is 0.94, and the correlation of item slope parameters is 0.91. 
Table 9.16 presents an overview of these correlations. These high correlations as well as the figures above suggest that 
the same constructs are being measured under both modes. The results from these field trial analyses suggested that 
a statistical link can be established whereby the computer- and paper-based countries’ results can be reported on the 
same scales for 2015 (for more information about the impact on mode effects on country means see The Impact of Mode 
Effects on Country Means in the Field Trial below).
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• Figure 9.9 •

Comparison of slope parameter estimates across paper-based (horizontal axis) 
and computer‑based (vertical axis) assessment modes for the PISA 2015 field trial data
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Note: All domains with trend items (reading, mathematics and science, as well as financial literacy) are included.

• Figure 9.10 •

Comparison of difficulty parameter estimates across paper-based (horizontal axis) 
and computer‑based (vertical axis) assessment modes for the PISA 2015 field trial data
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Table 9.16
Correlations of item difficulty and item slope parameters between paper-based and computer‑based 
trend items within and across domains

Domain Correlation of difficulty parameters (PBA,CBA) Correlation of slope parameters (PBA,CBA)

Mathematics 0.95 0.91
Reading 0.95 0.90
Science 0.92 0.94
Financial Literacy 0.94 0.92
All Domains 0.94 0.91

IRT models to assess measurement invariance and mode differences

Several mode-effect models that can be used to account for differences across groups were tested. More specifically, 
we tested whether mode differences are present on a global level, that is, whether the difference between paper and 
computer modes just adds or subtracts a level of difficulty to all assessment tasks, or whether the effect is person-specific, 
that is, whether some people are more affected by mode differences than others. Finally we tested a model that examines 
whether some items show mode effects, while others do not – that is, whether items are affected differently by mode 
effects.

Strong measurement invariance holds if the same item parameters fit the items independent of the mode of administration. 
A mode effect that homogeneously applies to all items in a test when changing the mode can be modelled by adding 
the same constant to all difficulty parameters in  the case of  the affected mode. Consider the  two-parameter logistic 
model in equation (9.2) for greater ease of exposition. The notation in (9.2) can be transformed to the customary two-
parameter logistic model notation via the transformation a = α /1.7 and b = − β/α.

If item i is presented in two different modes of administration, say paper and computer, a common (but arguably simple) 
assumption is that all items are “shifted” by a certain amount with respect to their difficulty. The reason for this could 
be that reading or, more generally, processing the item stem or stimulus is generally harder (by the same amount for all 
items and stimuli) on the computer, or entering a response on the computer is more tedious than filling in a bubble on an 
answer sheet of a paper-based instrument.

In order to represent this, we assumed a logistic IRT model with a general mode effect parameter − δm that represents 
how much more difficult (or easy) solving an item is when presented in a given mode relative to a reference mode. 
For items presented in the reference mode, we assumed that model (9.2) holds; for items in the “new” model, we assume 
that 

9.14 

P X = 1| θ, αi, i, δm =
exp αiθ + i − 1{ i>I}δm

1 + exp αiθ + i − 1{ i>I}δm

.ß
ß

ß

The expression 1{i>I} denotes the  indicator function which returns 1  if i > I. This shift by a mode effect in  the same 
direction for all items in a specific mode can be thought of as a model with items (instead of items for each delivery 
mode separately) in which the difficulty parameters for  items presented in one mode (say paper) are assumed to be 
βi for i = 1,..., I and the item parameters for computer mode are appended as parameters and arranged in the same 
order and constrained to be βj = β(j−I) − δm. That is, all computer-based item difficulties are simply shifted by a certain 
amount compared to paper-based items. Note that all IRT models illustrated in this section are based on the assumption 
of equivalent groups.

To explain why such an approach may be needed, or why it would be considered to estimate a mode effect in this way, 
the question of transitioning from paper- to computer-based testing can be used as a prototypical application. In such 
a setting, the same test items would exist in two modes, and information on how the test behaves (and more specifically, 
about the item parameters) may be available from large samples drawn from the reference population. In this setting, 
estimating completely new βj may not be advisable, while estimating an overall mode effect − δm could be considered 
for the purpose of adjusting for the effect of moving the items to computer administration.

In contrast to the assumptions made in model (9.14), one could argue that not all items become more difficult when 
moving them to the computer; some could be more difficult, some could be at the same difficulty level, and some could 
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even become easier. This leads to a model that adds an item-specific effect to the difficulty parameter. In model (9.15) 
we write this as a DIF parameter, which quantifies the difference from the paper-based assessment, namely

9.15 

P(X = 1|θ, αi, i, δm) =
exp(αiθ + i − 1{ i>I}δmi)

1 + exp(αiθ + i − 1{ i>I}δmi)
.ß

ß

ß

As outlined above, the difference in  comparison to  the model of metric (or “weak”) factorial invariance (Meredith, 
1993) is that the computer-based difficulties are written in reference to the paper mode and are decomposed into two 
components, that is, βj = βi+I – δmj, while it is assumed that the slopes αj = αi+1. Again, this is written as a model with 
items, of which the  first I  items are presented in  the reference mode, while the second I  items are presented in  the 
“new” mode. This decomposition is formulated so the difficulties are shifted by some item-dependent amount associated 
with the  item or  item feature. For paper-based items i ≤ I we can assume δmi = 0. In  addition, there may be other 
items for which we may further assume that δmi = 0 (e.g., items for which the response mode differs but does not have 
a significant effect on item difficulty). These unaffected items are the basis for linking across modes, and below we show 
that these can indeed be assumed to be the majority of items.

The  model given in  equation (9.15) with constraints across both modes on  slope parameters, as  well as  potential 
constraints on  the DIF parameters, establishes a measurement invariance (e.g., Meredith, 1993) IRT model that can 
be viewed as representing a mixture of items with strong and weak factorial invariance. The more constraints of the type 
δmi = 0 we have, the more we approach a model with strong factorial invariance. Note that the equivalent groups design 
allows us to assume the equality of means and variances of the latent variable in both modes because it is assumed that 
students receiving the test via computer or paper mode are randomly selected from a single population.

Finally, if it cannot be assumed that the mode effect is a constant shift in difficulty for all students, one may assume that 
an additional ability ϑ is required to predict the response probabilities in the new mode accurately. We still assume 
the same average in the paper- and computer-based ability distribution for the domain specific dimension; the additional 
mode dimension is  independent. This leads to model (9.16) in which a second latent variable was assumed, that is, 
another random effect was added to the item function for items administered in the new mode. The expression αmiϑ 
in model (9.16) below indicates that there is a second slope parameter αmi for items administered in the new mode and 
that the effect of the mode is person dependent and quantified by the second latent variable ϑ. We obtain

9.16 

P X = 1| θ, αi, i, δm =
exp αiθ + i − 1{ i>I}αmiϑ

1 + exp αiθ + i − 1{ i>I}αmiϑ
.ß

ß

ß

Note that the slope parameters and item difficulties, αi,  βi, are as before in models (9.14) and (9.15) equal across modes. 
Only the additional “mode slope” parameter αmi needs to be estimated for all items administered in the “new” mode, 
plus the joint distribution f(θ,ϑ) for which we can assume that the variables are uncorrelated, that is, cov(θ,ϑ) = 0.

In equation (9.16) it is assumed that the effect of the person “mode” variable varies across items, which is likely the more 
plausible variant, even though a mode in which person-dependent but item-homogenous effects αmϑ (a Rasch variant 
of a random mode effect) could also be defined. Models (9.14), (9.15), and (9.16) can be applied to multiple populations, 
that is, by assuming one population per participating country or language group in PISA.

We conducted an empirical comparison of the models based on the Field Trial data. Table 9.17 below shows the results 
of models (9.14), (9.15), and (9.16) for a multiple population mode effects analysis using the PISA Field Trial data. All 
analyses were conducted with the software mdltm (von Davier, 2005). As a general rule, lower values for the statistics 
(Akaike information criterion, AIC; Bayesian information criterion, BIC; Consistent Akaike Information Criterion, 
CAIC, log-penalty, and Akaike) indicate better fit. However, when the magnitude of the statistics is similar, the more 
parsimonious model should be preferred. In all cases, Model (9.16) has the lowest values for these statistics, yet they 
do not differ appreciably from the fit for Model (9.15). To provide additional evidence for this interpretation we examined 
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the  marginal reliability of  scores under each model as  well as  the correlation between estimates of  student ability 
obtained from both models. The median reliability for scores in all domains for each of the models was quite similar 
across groups, with median values ranging from 0.8 to 0.85. There were a few groups where the reliabilities were notably 
lower (less than 0.6). The inclusion of these data had some influence on the model fit, but there was insufficient evidence 
based on the reliability to suggest that Model (9.16) should be preferred over Model (9.15). Additionally, the correlation 
between estimated scores for Models (9.15) and (9.16) in each domain was r = 0.999, which suggests that there was 
little added utility in using Model (9.16). We can conclude based on these results that model (9.15) describes the data 
sufficiently well.

This means that there is a need to specify item-specific, but not person- (or country2-) specific, mode effect parameters.

Table 9.17
Measurement invariance assessment using mode effect models for the PISA field trial data, analysed 
separately for the domains of financial literacy, maths, reading and science

Domain Model
Penalty 

AIC AIC
Penalty 

BIC BIC
Penalty 
CAIC CAIC

Log 
Penalty Akaike

FinLit (9.14) 192 253996 1003 254807 1099 254903 0.564498 0.564925
FinLit (9.15) 236 251899 1233 252896 1351 253013 0.559736 0.560260
FinLit (9.16) 248 251744 1295 252792 1419 252916 0.559365 0.559917
Maths (9.14) 620 1416987 3697 1420064 4007 1420374 0.526304 0.526534
Maths (9.15) 674 1409948 4019 1413293 4356 1413630 0.523668 0.523919
Maths (9.16) 714 1409235 4257 1412778 4614 1413135 0.523388 0.523654
Read (9.14) 818 1770885 4877 1774944 5286 1775353 0.534144 0.534391
Read (9.15) 990 1760709 5903 1765622 6398 1766117 0.531022 0.531320
Read (9.16) 1104 1758594 6583 1764073 7135 1764625 0.530349 0.530682
Science (9.14) 1694 5378045 10100 5386451 10947 5387298 0.586249 0.586433
Science (9.15) 1984 5361306 11830 5371152 12822 5372144 0.584392 0.584608
Science (9.16) 2180 5356556 12998 5367374 14088 5368464 0.583852 0.584090

An evaluation of the log-penalty shows that the simple item-independent mode-effect model does not fit as well as the 
item-specific model (9.15) and the model (9.16) with an additional latent variable. Models (9.15) and (9.16) appear 
to fit the data almost equally well, both accounting for item-specific effects in slightly different ways. Therefore, it can 
be assumed that a mixture of strong and weak factorial invariance holds and that the computer-based version of the test 
measures the same construct as the paper-based version. Clearly, the mode effect is not a homogenous shift of difficulties, 
but rather one that affects some items more than others; a large percentage of items show strong invariance and are not 
affected in a significant way by mode differences. Further, the results of estimating Model (9.15) for each domain showed 
that most mode effects on individual tasks were positive, although some were negative. This result shows that a common 
linear adjustment-based equating method would not be appropriate, and it opens opportunities to optimise the linking 
between paper- and computer-based assessments by means of item selection, and equality constraints for those items 
that are least affected by changes in presentation mode.

The distribution of the mode-effect sizes indicated that we can identify a set of items for which strong measurement 
invariance holds. Those items for  which no  significant mode effect could be  detected formed the  basis for  linking 
the computer-based assessment to past PISA cycles, while all trend items can be used, if  retained in  future studies, 
to measure the construct due to the invariance properties established in this section.

In  summary, the  model that balances complexity and model data fit for  evaluating and accounting for  item 
mode effects among those considered here was the model that assumes the same parameters for the paper-based 
assessment as  for the computer-based assessment and adjusted the paper-based item difficulty parameters by a 
differentional item-functioning parameter for a subset of items, without the introduction of an additional mode-
specific skill. This indicated that strong measurement invariance can be established for the majority of items while 
weak factorial invariance could be assumed for  the remaining trend items administered in  the computer-based 
PISA field trial.

It is important to point out that these results indicate that the computer- and paper-based trend items for PISA 2015 can 
be linked using this approach based on established measurement invariance. The adjustment, if necessary, for a number 
of items appears to be small compared to the range of difficulty parameters in the trend item set, while the direction 
of adjustment points to added difficulty.
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The impact of mode effects on country means in the field trial
To evaluate the impact of mode effects relative to other variables of interest, country means based on the domain-specific 
skills obtained from a simplified version of Model (9.16) were split by three variables and compared to one another: 
gender, mode and a random split of schools within each country. Model (9.16) was simplified for this analysis so that 
it incorporates scalar invariance for those items that showed little or no mode difficulty differences and assumes metric 
invariance for the remaining items. There were no country-specific mode effects needed or applied in these analyses. 
This ensures comparability across countries while accounting for item-specific difficulty differences for a subset of items 
only, with these differences applied across all countries in  the same way. This approach ensured that comparability 
is maximised, while mode effects that affected different items in different directions were accounted for so that potential 
effects on scale comparisons were minimised.

The  comparisons are illustrated in  Figures 9.11  to 9.19  separately for  the domains of  reading, mathematics and 
science. These figures show that for each domain, good agreement between country means by assessment mode could 
be achieved. The largest differences between means were observed based on a random school split, not based on mode. 
Thus, differences between countries might be due more to differences between students and schools than to differences 
based on the mode of assessment.

In  summary, the differences and variability between gender groups and also the  two groups formed by  randomly 
splitting the 25 schools in  the field trial were at  the same level or  larger than the differences obtained by splitting 
the  sample by  mode (in  other words: mode effects do  not seem to  be the  biggest problem). The  apparent mode 
differences that may be observed if individual countries split their data by mode have to be viewed in the light of these 
results. Given the sample size of the field trial, differences that one may be tempted to attribute to mode differences 
are at the same order of magnitude as what could be observed if we split the field trial sample randomly by some 
other criterion.

• Figure 9.11 •
Split of country means by assessment mode for mathematics
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• Figure 9.12 •
Split of country means by gender for mathematics
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• Figure 9.13 •
Split of country means by random school split for mathematics

y = 0.9975x + 0.007
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• Figure 9.14 •
Split of country means by assessment mode for science
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• Figure 9.15 •
Split of country means by gender for science
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• Figure 9.16 •
Split of country means by random school split for science

y = 1.0348x + 0.0001
R² = 0.87442
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• Figure 9.17 •
Split of country means by assessment mode for reading
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• Figure 9.18 •
Split of country means by gender for reading

y = 0.9991x – 0.269
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• Figure 9.19 •
Split of country means by random school split for reading
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Dimensionality and scaling of science trend and new items

Dimensionality of the science scale

The new science items developed for 2015 are based on a revised assessment framework for this domain. These new 
items exist in  the computer-based assessment mode only because PISA  2015 represents a  shift from a  paper- to  a 
computer-based survey. In addition to the 85 trend science items from previous PISA rounds, the science domain in the 
main survey consists of 99 new items resulting in a total of 184 overall. The scales for all PISA content domains have 
historically been based on the assumption that all underlying constructs are unidimensional. With the revised framework 
for science it is important to evaluate whether the unidimensionality assumption still holds before new and trend items 
can be scaled together.

This assumption was tested by comparing a unidimensional model (where new and trend items were assigned to the 
same unidimensional factor) and a 2-dimensional (multidimensional) confirmatory IRT model (where new and trend 
items were assigned to  two different factors). In  addition, a Rasch model for  the unidimensional science scale was 
provided as  comparison. All models, the  Rasch, the  two-parameter logistic /generalised partial credit model and 
the 2-dimensional (multidimensional) confirmatory IRT model two-parameter logistic/generalised partial credit model 
were estimated as multiple group models using country-by-language groups. The data used for this analysis came from 
the subset of computer-based assessment countries that was available at the end of March 2015; please note that due 
to the potential on the analysis of the PISA 2015 data, this analysis had to be completed prior to analysing the data from 
all PISA computer-based assessment countries.

Results based on  overall model selection criteria show that the  unidimensional two-parameter logistic/generalised 
partial credit model should be preferred over the 2-dimensional model (see Table 9.18). The difference in model fit 
improvement based on the Gilula and Haberman (1994) log penalty measure is negligible. The two-parameter logistic/
generalised partial credit model reaches 99.91% of the model fit improvement compared to the 2-MIRT model, both 
in reference to  improvement over the independence (baseline) model. Moreover, model-based correlations obtained 
from the 2-dimensional model show high correlations between the  two factors (new and trend items) ranging from 
0.83 to 0.96 across the different groups, suggesting there is a single identifiable underlying latent variable. Additionally, 
the  dimension-specific weighted likelihood estimates (WLEs) of  student ability are very highly correlated with 
the unidimensional WLEs. Hence it is reasonable to assume that new and trend science items and scores can be placed 
on the same unidimensional scale.

Table 9.18
Model selection criteria for the unidimensional and the two-dimensional IRT models 
for trend and new  science items

AIC BIC Log penalty % improvement

Independence NA NA 0.6479 0.00%
Rasch model 8021282.185 8024639.114 0.5720 90.88%
2PL/GPCM 7916247.615 7922743.894 0.5645 99.91%
MIRT 2-dimensions 7915262.270 7922400.924 0.5644 100.00%

Note: Log Penalty (Gilula and Haberman, 1994) provides the negative expected log likelihood per observation, the % Improvement compares the log-penalties of the models relative 
to the difference between most restrictive and most general model. The two-parameter logistic/generalised partial credit model reaches 99.91% of the likelihood improvement 
compared to the 2-dimensional MIRT model, while the Rasch model reaches 90.88%.

Residual Analysis for Science

As additional evidence in support of the unidimensionality assumption for the science scale, a residual analysis was 
conducted for the new science items. Due to the nature of the new science items (simulation-based tasks, including 
different steps for the students to follow) the goal was to investigate possible local dependencies among items. If such 
dependencies are present, this would pose a threat to the assumption of a unidimensional scale.

First, response residuals were calculated for each item response and correlations among residuals (across respondents) 
were computed. A  principal component analysis using the  resulting correlation matrix was then conducted. 
The principal components analysis was used to evaluate the dimensionality of the scale. Should the first component 
among residuals be much larger than the second component, an additional latent trait other than the overall ability 
would be assumed.
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Response residuals were computed after the item calibration process in each domain using the mdltm software (von 
Davier, 2005). For dichotomous item responses, response residuals for a person with estimated ability for each θv item 
i = 1, ..., K were defined as below

9.17 

r (xiv) =
xiv − P Xi = 1 ∣ ^θv

P Xi = 1 ∣ ^θv 1 − P Xi = 1 ∣ ^θv

For polytomous item responses, response residuals were calculated using the conditional mean and variance defined 
below.

9.18 

r xiv =
xiv − E Xi ∣ ^θv

V Xi

9.19 

E X m
i ∣ ^θ =

max(Xi)

x=1
xmP Xi = x ^θ∑

9.20 

V Xi ∣ ^θ = E X 2
i ∣ ^θ − E Xi ∣ ^θ

2

Response residuals were calculated for the 99 new science items using data from a subset of computer-based assessment 
countries (46 countries). Note again that due to the timeline of PISA 2015, this analysis was completed prior to receiving 
the data from all PISA countries.

In PISA 2015, no student responded to all of the questions. Given this missing-at-random design, Pearson correlations 
among items were calculated via pairwise deletion. The visual representations of the correlation matrices were evaluated 
for remaining dependencies. When a pair of items showed higher correlations, the pattern was checked to determine 
if it was consistent across countries. Findings from the correlation matrix were interpreted in connection with the item 
slope parameter estimates and item-total correlations. If an item pair showed highly correlated response residuals and 
the item slope parameter estimates were high as well for both items, converting these two item scores into a sum score 
and treating this score as one polytomous item was considered (Rosenbaum, 1988; Wilson and Adams, 1995).

Figure 9.20 shows a heat map plot of the correlations among item level response residuals for the new science items, 
averaged across countries. Highly-positive correlations between item pairs would be  indicated by  blue diamonds, 
highly-negative correlations would be indicated by red diamonds. Since there are none apart from the expected perfect 
correlation of each residual with itself, this plot suggests that there are no remaining local dependencies among the items 
after controlling for the latent ability. This pattern was consistently observed across countries. These findings, as well 
as the results of the principal component analyses, show that there are no local dependencies among the items. Hence, 
no further treatment (combination or exclusion of items) was needed for new science items.
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• Figure 9.20 •

Correlation plot among new science items averaged across countries (46 countries)
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Final scaling of science in the main survey

After confirming that all science items can be calibrated unidimensionally and without the need to change the scoring 
of the new simulation-based items, all items were calibrated using a single-scale multiple-group IRT model. No item had 
to be excluded from the calibration. The IRT scaling was conducted using the 2015 data together with the historical PISA 
data (2006-2012). The estimation of international/common item parameters and unique item parameters, in case of item 
misfit, and the treatment of items with identified mode effects followed the procedure described earlier.

The  IRT calibration results show very good fit of  the international item parameters. The  international/common item 
parameters for both new and trend items were retained for 89.7% of trend items and for 93.3% of the new science items 
(see Chapter 12 for more information about scaling outcomes).

Scaling of reading and mathematics
In  the PISA  2015 main survey, the  domains reading and mathematics consisted of  trend items only. Mathematics 
comprised 83 trend items in the paper-based assessment (PBA) and 82 equivalent trend items in the computer-based 
assessment (CBA). Reading consisted of 103 trend items in the PBA and 103 equivalent trend items in the CBA. Both 
domains were scaled separately using unidimensional multiple-group IRT models (see The IRT Models for Scaling above). 
The IRT scaling was conducted using the 2015 data together with the historical PISA data (2006-2012). The estimation 
of international/common item parameters and unique item parameters, in case of item misfit, and the treatment of items 
with identified mode effects followed the procedure described in the sections National and International Item Calibration 
and Handling of  item-by-country/language and item-by-mode interactions above. One mathematics item had to be 
excluded from the scaling (see Table 12.1 in Chapter 12); no items were excluded for reading.
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The  IRT calibration shows very good fit of  international/common item parameters. The  international parameters 
were retained in 89% of cases for common item parameters for reading items and in 94.5% of cases for items from 
the  mathematics scale (see Chapter 12  for more information about scaling outcomes). The  results illustrate high 
comparability of  the results across different countries and languages, and across different assessment cycles and 
assessment modes.

Dimensionality and scaling of collaborative problem solving

Dimensionality of collaborative problem solving in the field trial
The collaborative problem solving (CPS) scale in the 2015 PISA field trial consisted of 7 units that comprised 188 items. 
The units are based on simulated conversations with one or more computer-based agents that are designed to provide 
a virtual collaborative conversation. Students have to choose an optimal sentence from a multiple-choice list to go 
through the conversation with agents, or choose one or more actions programmed in the unit.

For two of the seven units (unit 101 and unit 105) changes to the scoring of responses were necessary before the data 
could be used for IRT scaling. Using path analyses, it was found that – due to the nature of the collaborative problem 
solving items – data from the  two mentioned units showed item dependencies in  the responses. This was because 
of different paths that could be taken by students through the simulated chat, resulting in negative residual correlations. 
Since such dependencies have the potential to introduce bias into the results, the collaborative problem solving chat 
items exhibiting dependencies were combined into polytomous “composite items” by summing the responses for the 
different paths students could take. Table 9.19 provides an overview of the combination rules used for these composite 
items. Given these combinations, the number of items available for the IRT scaling was 164.

Table 9.19
Combination of collaborative problem solving items of Units 101 and 105 
to achieve fair scoring in the PISA 2015 field trial

New item ID for composite 
items Combinations of CPS items

CC101201C CC101201+CC101202
CC101203C CC101203+CC101204+CC101205
CC101206C CC101206+CC101207
CC101301C CC101301+CC101302+CC101303
CC101304C CC101304+CC101305
CC101307C CC101307+CC101308+CC101309A+CC101309B+ CC101310+CC101311+ CC101312A
CC101312BC CC101312B+CC101313
CC101317C CC101317+CC101318+CC101319
CC105103C CC105103+CC105104
CC105105C CC105105+CC105106+CC105107
CC105201C CC105201+CC105202
CC105208C CC105208+CC105209+CC105210
CC105212C CC105212+CC105213
CC105304C CC105304+CC105305

Dimensionality analysis of collaborative problem solving field trial data
The different units were combined into four clusters presented as C1 to C4 in the assessment design. The correlations 
between the  clusters in  the Field Trial were generally reasonable, with a  range from 0.76  to 0.81  except for  those 
involved with C1. Cluster 1, which contained only a single unit, had lower correlations with the other clusters, ranging 
from 0.69 to 0.73.

The specific structure of the CPS units and response types, as well as the results from the IRT analysis of the CPS 
using the unidimensional models, prompted the need to conduct additional analyses (discussed below). However, 
the  unidimensional IRT models showed acceptable fit in  terms of  item mean deviation and root mean square 
deviation.
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The structure of the CPS units was such that there were a relatively large number of response variables within a unit, while 
the number of units was small. The contextual coherence of the chat selections that made up these responses followed 
a common theme within a unit; the conjecture thus could follow that what is measured is more the understanding 
of what a particular topic requires and might therefore be very specific to each unit.

In order to examine this question, the collaborative problem solving data from the PISA 2015 field trial were analysed 
using multidimensional IRT models, more specifically with a bifactor model (Holzinger and Swineford, 1937). This 
model allows an evaluation of whether there is a single source of common variance shared across units, or whether 
the  observed responses are additionally driven by  unit-specific response tendencies. In  other words, the  bifactor 
model, when compared to a unidimensional model, allows a test of whether unit-specific factors have to be taken 
into account.

Table 9.20
Comparison of two-parameter logistic/generalised partial credit modelsand bifactor model 
for 164 CPS items

Likelihood A-penalty AIC B-penalty BIC

2PLM/GPCM -971208 1000 1943417  5652 1948069
Bifactor -962224 2206 1926653 12468 1936915

The results in Table 9.20 suggest that a bifactor model including a latent variable for each unit fitted the Field Trial data 
better than the unidimensional two-parameter logistic/generalised partial credit models. The bifactor model indicates 
that unit response variance was due to unique factors that are not fully measured by a latent variable defined across 
response variables without looking at their association with a specific content or unit.

It turned out that this result was mainly due to a single unit, presented as C1. As a consequence of these findings, one 
unit (unit 101) was not included in the PISA 2015 main survey. Additional dimensionality analyses (residual analysis, 
principal component analysis) were conducted with the main survey data in order to further examine and treat local 
dependencies of collaborative problem solving items. The next section describes these additional analyses and findings 
based on the main survey data.

Dimensionality and residual analysis of collaborative problem solving in the main survey
For the PISA 2015 main survey, 134 items were selected out of the 164 (partly combined) items for the collaborative 
problem solving domain (unit 101 was not selected). The  multidimensional structure of  these items was examined 
residual analyses revealed further dependencies among items that led to further combinations of items into polytomous 
items (composite items). The residual analyses for CPS followed the same procedure as described earlier for science 
(Final scaling of  scientific literacy in  the main survey). Item-level response residuals were calculated for  each item 
by respondent interaction for all observed responses, and pairwise correlations among these residuals were computed 
for the different country samples. Note again that due to the timeline of PISA 2015, this analysis was completed prior 
to receiving the data from all participating PISA countries. Several pairs of items were identified with highly correlated 
residuals; the pattern was quite consistent across countries. Figure 9.21 shows the correlations among collaborative 
problem solving items averaged across countries. Relatively highly correlated item pairs are indicated by blue diamonds 
and were mainly found near the  diagonal line. This indicates that the  dependencies (high item-pair correlations 
of response residuals) were mainly localised and taking place within a few selections. Rather than accounting for these 
in generalised latent traits measured through all responses in a unit, these localised dependencies were treated by item 
combinations as described above.

Based on  the findings from the  residual analyses, additional items were combined into composite items to  remove 
the remaining local dependencies. Table 9.21 shows the combination of these items into composite items. Details about 
the items included in this rescoring can be found in the databases containing country-specific data as well as variable 
and value labels.
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• Figure 9.21 •
Correlation plot among collaborative problem solving items averaged across countries 
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Table 9.21 List of composite items based on residual analyses

New item ID 
for composite items Combinations of collaborative problem solving items

CC104301C CC104301+CC104302+CC104304
CC106107C CC106107+CC106108
CC102102C CC102102+CC102103
CC102209C CC102209+CC102210+CC102211
CC103108C CC103108+CC103109+CC103110+CC103111
CC105108C CC105108+CC105109
CC105203C CC105203+CC105204
CC105308C CC105308+CC105309
CC105408C CC105408+CC105409

After the combination into additional composite items, the number of collaborative problem solving items was reduced 
to 121 (from the initial set or 134 items) for inclusion in the IRT scaling. In order to evaluate the performance of the 
composite items, residual analyses were repeated using the 31 countries and 11 additional countries for which data 
were later received (42 countries in total). Visual representation of the correlation matrix in Figure 9.22 confirmed that 
remaining local dependencies among items were successfully treated. In contrast to Figure 9.21 that shows several blue 
diamonds (highly correlated items) near the diagonal line, Figure 9.22 shows no blue diamonds off the diagonal line.



9
SCALING PISA COGNITIVE DATA

PISA 2012 TECHNICAL REPORT  © OECD 2014 185

• Figure 9.22 •
Correlation plot among collaborative problem solving items averaged across countries 

after treating them as composite items (42 countries)
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In  addition to  the collaborative problem solving residual analysis, a  principal components analysis was conducted 
using the residual correlation matrix. The principal components analysis was used to evaluate the dimensionality of the 
collaborative problem solving items. Should the eigenvalue of the first principal component extracted from response 
residuals be large, an additional latent trait other than the overall ability could be assumed. When all items are included 
as variables, the percentage of variance adds up to 100%. The percentage of variance for the first principal component 
ranges from 4.4% to 13.9% with a mean of 6.9%. This number can be considered a small amount of common variance. 
When the percentages of variance for the first 10 principal components are summed up, the value ranges from 26.2% 
to 41.5%, with a mean of  32.5%, a  value that is more typical for  a substantial amount to be considered due to  a 
common source of variability of response variables. The small amount of variance of the first, relative to the sum of the 
variances of  the first ten components shows that one cannot justify the  assumption of  another dimension that may 
be able to explain statistical dependencies between residuals. In other words, once the ability dimension is accounted 
for, there is very little common variance among the response residuals.
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• Figure 9.23 •
Percentage of variance from principal component analyses (6 example countries)
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Operational scaling of the collaborative problem solving main survey data

After removing all observed local dependencies by combining certain items into polytomous items, the resulting 121 
collaborative problem solving items were calibrated using a unidimensional IRT model. Four items had to be excluded 
from the IRT scaling (due to low item total correlations, too few response in one response category, or technical issues; 
see Chapter 12), resulting in 117 CPS items on which the item parameter estimations are based. Note that all omitted 
responses in the CPS domain were scored as not reached (missing) due to differences in the administration of this domain. 
Omissions in  reading, mathematics and science may be  the result of  intentional skipping of  items, as students have 
the ability to move to the next item without interacting with the current one. In collaborative problem solving, however, 
students must make a sequence of successive choices and cannot skip forward to avoid a choice. Thus, unobserved 
responses in CPS items are a result of students taking different paths while working on an item, meaning some paths 
are not taken. Therefore, unobserved responses do not reflect student skill and need to be treated as not administered. 
The estimation of international/common item parameters and unique item parameters, in case of item misfit, followed 
the procedure described in the sections National and international item calibration and Handling of item-by-country/
language and item-by-mode interactions above.

The  IRT calibration shows good fit of  the international/common item parameters. International parameters were 
retained in 95% of the item parameters (see Chapter 12 for more information about scaling outcomes) and, thus, a high 
comparability of the scale across different countries and languages.

Scaling of financial fiteracy
In PISA 2015, financial literacy had a data collection design that provides stronger connections to data collected in other 
domains, compared to  the PISA  2012 design. That is, every student who took financial literacy also took reading, 
mathematics, or both, in addition to science. Therefore, PISA 2015 provides a better estimate of the covariance between 
the core domains and financial literacy. However, because not every country took Financial Literacy in PISA 2015, 
there are only a few countries that have data available in both years. As such, the 2015 main survey calibration required 
data from PISA 2012 as well as the 2015 field trial. This approach provides a sound link for PISA 2015 because, in the 
2015 field trial data, a larger group of countries took both the computer- and paper-based assessments (for the mode-
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effect study). This is also important since the 2015 administration of financial literacy is based on data collection for a 
subset of students in a second (afternoon) testing session. All available financial literacy data (2012 main survey, 2015 
field trial, and 2015 main survey) were combined for the IRT scaling using a multiple-group IRT model based on an 
equivalent-groups (for the field trial samples) design for the linking. This particular linking method provides a sound link 
and is robust against changes in the percent correct observed in the 2015 main survey; the inclusion of the field trial 
data allows the assumption of equivalent groups since students were randomly assigned in the field trial to paper- versus 
computer-based assessments.

The equivalent groups design is a method of  linking that is common in  test equating. While it provides a consistent 
linking approach, it  does not provide information on  which items are directly comparable. Neither does it  require 
or assume that the  items be  invariant across assessment modes, since the comparability is established based on  the 
premise that the distribution of student ability is equivalent across groups. The link in financial literacy is established 
through common populations, while for  the other scales (reading, mathematics and science) it was possible to  link 
across modes and assessment cycles using common items.

In the PISA 2015 main survey, the financial literacy domain consists of 43 trend items. No items were excluded from 
the scaling. The estimation of international or common item parameters and unique item parameters, in case of item 
misfit, and the treatment of mode effects followed the procedure described in earlier sections.

The IRT calibration shows a very good fit of the international/common item parameters. The scaling was able to retain 
common/international item parameters for 92.9% of the items (while for 7.1% of the items unique item parameters had 
to be estimated) and, thus, a high comparability of the scale across different countries and languages (see Chapter 12 for 
more information about scaling outcomes).

Developing common scales for the purpose of trends
The new modelling approach in PISA 2015 using a hybrid model (the combined Rasch /partial credit model and two-
parameter logistic/generalised partial credit model) necessitated a  reanalysis of  data from prior cycles (2000-2012) 
with the aim of  studying the effect of  the more general model applied over multiple cycles on stabilizing the  trend 
measure and to ensure its quality. With the introduction of computer-based assessments as the main mode of assessment 
in PISA 2015, there was concern that the mode might influence item parameter estimates for the linking items. Moreover, 
some linking items might not work equally well for all of the populations assessed in PISA 2015. Utilizing these items 
reduces the comparability of the trend measure; hence, there may be a need to exclude them from the main survey item 
pool. However, given the new scaling approach for PISA 2015, it might be possible to retain a larger share of these items, 
since the model used is more flexible and contains the previous scaling approach as a special case.

Results from prior analyses (PISA  2000-2012) were replicated and then re-examined using the  hybrid Rasch/partial 
credit model and two-parameter logistic/generalised partial credit model. The reanalysis produced a common parameter 
for each of the previously used items in the databases from PISA 2000 to 2012. These parameters were treated as fixed 
parameters for the PISA 2015 field trial scaling. This was done to establish a stable link between the field trial items and 
the international scale based on past frameworks of each domain. Parameter constraints for various items were released 
in  subsequent rounds in  case of  item misfit. The common item parameters in  the field trial generally fit well; thus, 
the same item parameter can be assumed over cycles for a large number of trend items.

The overall item fit for each domain was very good, with small numbers of items misfitting for reading (2.5%), mathematics 
(1.8%), and science (3.9%). Financial literacy showed the highest percentage of misfit (4.1%). Note that item misfit was 
defined for root mean square deviation values larger than 0.2 in the field trial then later in the main survey analysis. 
All of the main scales showed sufficient IRT-based (marginal) reliabilities (Sireci, Thissen, and Wainer, 1991; Wainer, 
Bradlow, and Wang, 2007, 76) with 0.83 for reading, 0.81 for mathematics, 0.80 for science (based on trend and new 
items), and 0.85 for financial literacy. These results illustrate the quality of trend measure across different assessment 
cycles (2015 data versus 2000-2012), different assessment modes (paper- versus computer-based assessments), and even 
across different countries and languages as the multi-cycle scaling with common item parameters assures the equivalence 
of inferences of trend assessment.

In the PISA 2015 main survey a comprehensive rescaling was carried out including the 2015 main data. This was 
done to ensure that the main survey data equally contributed to the estimation of item parameters, while establishing 
the  link to  past PISA rounds by  including previous cycles. Instead of  fixing the  item parameters for  trend items 
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obtained from past (historical) data to the 2015 data, item parameters were estimated based on all available data 
from 2006 through 2015. The historic data were only included back to 2006 because this was the last cycle when 
science was the  major domain, and because there were very few items left in  the 2015 round that dated back 
to the early (2000 and 2003) rounds of PISA. This approach ensured that domains tested in 2015 with a new design 
that improved minor domain coverage and broadened the assessment of the revised framework were contributing 
to  the estimates that established the common scale linking across prior PISA cycles. The  IRT calibration for each 
domain showed good fit of  the items to the international/common item parameters. The results also showed high 
comparability in the item parameters across different countries and languages, and across different assessment cycles 
and assessment modes.

Rescaling PISA 2000-2012

The PISA 2015 field trial and main survey design were premised on the availability of a quality set of the linking items 
across the previous PISA cycles. These designs incorporated all previously used trend items from all previous cycles 
in the field trial so that the best possible link could be established.

This increase in scope also required that prior analyses be revisited because the integration of all previously used trend 
items required a full re-estimation of the scaling model on which prior PISA cycles were based. There is strong evidence 
in favour of a joint model for linking the cycles across multiple populations (von Davier and von Davier, 2007; Mazzeo 
and von Davier, 2008, 2014). This also allows different trend clusters containing items sets not previously used in a single 
assessment to be linked together within a comprehensive modelling approach.

PISA has collected data in representative samples of 15-year-old students around the world every three years since 2000. 
In each of the first five cycles (2000, 2003, 2006, 2009, 2012), both OECD and partner countries participated, resulting 
in almost 300 cohorts defined by assessment year and country. Many of the OECD countries, as well as a substantial 
number of partner countries, had participated in each of the first five PISA cycles and continued to do so in 2015.

In work leading up to the 2015 main survey analysis, an effort to utilise all available evidence on item functioning and 
scale coverage of the task material used in PISA was made. ETS compiled a database that merged all five cycles and all 
countries. This yielded a file that contains roughly 2 million student records. ETS utilised a multiple group IRT model 
approach to  link all items, by domain, across all PISA cycles by country combinations (Bock and Zimowski, 1997; 
Yamamoto and Mazzeo, 1992; von Davier and Yamamoto, 2004; von Davier and von Davier, 2007; Mazzeo and von 
Davier, 2008, 2014; Weeks, von Davier, and Yamamoto, 2014).

Several analytical steps were performed. More specifically, in  order to  find the  best fitting model, different and 
increasingly complex IRT models were specified and estimated; model-data fit was compared using both AIC and BIC 
as well as measures of item fit. The analyses were carried out separately for each of the main PISA domains of reading, 
mathematics and science.

In a first step, the model used in  the operational reporting of PISA 2000-2012 was recreated in order to ensure that 
the results obtained in the previous analyses could be replicated. Previous cycles of PISA utilised the mixed-coefficients 
multinomial logit model (MCMLM; Adams, Wilson, and Wu, 1997), which is  a generalization of  the Rasch model 
(Rasch, 1960) that allows for category weights, multiple populations, and predictors of ability as well as polytomous 
response data. This was followed by an approach that utilised model-data fit indicators to relax model assumptions of the 
Rasch model where needed. More specifically, the Rasch model assumption of equal slopes was relaxed if it was found 
that the item discrimination was markedly different in the group of countries by cycles in which an item was used. ETS 
compared this analysis with an estimation of the two-parameter logistic /generalised partial credit model (Birnbaum, 
1968; Muraki, 1992) for multiple populations (von Davier and Yamamoto, 2004).

This initial analytic step allowed the estimation of  slope parameters for  those items that were found to discriminate 
more (or  less) well than the  items that follow the  Rasch model. In  the next step, model assumptions were relaxed 
further. Given that international assessments are translated into multiple target languages, item-by-country interactions 
are a potential threat to validity. As such, some items in some countries may function differently from how the item 
generally functions in the majority of countries. For this reason, we added an analysis step that investigates item-by-
country (by cycle) interactions in order to catch cases in which an item deviates substantively in one or the other cycles 
of PISA. This approach follows best practices (Glas and Verhelst, 1995; Yamamoto, 1998; Oliveri and von Davier, 2011, 
2014; Glas and Jehangir, 2014). All analyses were carried out using the software mdltm (von Davier, 2005). The next 
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section describes the results of the rescaling with the Rasch model, followed by a description of the model that combines 
features of the Rasch model and the two-parameter logistic/generalised partial credit model and the model for country-
by-item interactions.

Results for the Rasch model

In this subsection, we examine the comparability of rescaled and reported results from previous analyses. We initially 
fit the data with the Rasch model since it  has been the operational model used for  reporting PISA results by  cycle 
for the past five assessments. The results from our reanalysis of the data were compared with published results available 
online. Note that for our analysis, we obtained item parameters and country means by estimating one model across all 
cycles and all participating countries. This approach differs from the operational approach used in past cycles in that 
it  incorporates all data into the  item calibration in order to  link the results across cycles. The operational approach, 
on the other hand, uses only the mean of trend items in two adjacent cycles to find transformation constants in order 
to put the new scaling results on the old scale. If the fit of the model is perfect (i.e. if item parameters stay the same 
over cycles), and if the item functions can indeed be fitted by the Rasch model, both methods should produce identical 
results. In this case, however, the use of all cycles in a single comprehensive estimation of the Rasch model should lead 
to the most accurate item parameters possible, given the data at hand.

The comparison was carried out using two independent rescaling approaches. In contrast to the operational approach 
implemented by the contractor responsible for the 2000-2012 cycles, we did not use a random selection of 500 cases 
per country. Instead we  used all data from every country participating in  these five PISA cycles. The  re-estimation 
of parameters was conducted either per assessment cycle using the ConQuest software (Wu, Adams, and Wilson, 1997) 
or using all data from all five PISA cycles in a concurrent calibration using mdltm (von Davier 2005). The replication 
effort was done to ensure that we could recover the previously estimated item parameters.

In  summary, the  reproduction of  the original reporting scale was fully successful under both estimated approaches. 
The correlations between country means as reported by PISA and those reproduced by calibrating all available data in a 
comprehensive scaling was above 0.998 and, in many cases, especially for the mdltm calibrations that used all available 
data across cycles (0.999 and above). This suggests that there were no issues with the data used to estimate the item 
parameters. However, the estimation of a comprehensive model using data from all cycles leads to the most consistent 
item parameter estimates and a scale that is linked in the most rigorous way (see also Chapter 2) across all available 
PISA cycles.

Results for the hybrid ‘partial Rasch, partial two-parameter logistic/generalised partial credit’model

Given that we were able to replicate the Rasch model results, we moved on to an approach that combined features 
of the Rasch model and more general IRT models. Among these models are the two-parameter logistic/generalised 
partial credit model, which estimates a slope parameter for all items, a hybrid combination of the Rasch model and 
two-parameter logistic/generalised partial credit model that estimates slope parameters only for  items that do not 
fit the Rasch model, and a model that additionally accounts for  item-by-country interactions (IBCI) and estimates 
unique item parameters for countries and/or country-groups for  items that cannot be  fitted well using a common 
international parameter (Glas and Verhelst, 1995; Yamamoto and Mazzeo, 1992; Yamamoto, 1998; Oliveri and von 
Davier, 2011, 2014; Glas and Jehangir, 2014). Note that all model extensions are exponential family models, and 
that the operational model, the Rasch model, used in the first five rounds of PISA, is a special case of the extended 
approach. If the Rasch model indeed fits the data, the extended model will just reflect that, namely by fitting the data 
with something that very closely resembles the fit of the Rasch model. However, if the extended approach statistically 
fits the data substantially better than the approach used in previous rounds, this will be visible in model selection 
criteria.

This hybrid combination of item functions from either the Rasch model or the two-parameter logistic/generalised partial 
credit model allowed for fitting of a wider range of items compared to using the Rasch model alone. In contrast to the 
two-parameter logistic /generalised partial credit model being applied to all items, we were able to retain a number 
of slope parameters that are fixed across items, and hence were able to provide a model that makes the same assumption 
(an equal slope across items) as past PISA cycles for a subset of  items. Table 9.22 gives an overview of  the number 
of items that were retained as “Rasch” items using a common slope parameter of 1.0 in the hybrid model (Rasch/ two-
parameter logistic /generalised partial credit model) accounting for IBCI (hybrid/IBCI model).



9
SCALING PISA COGNITIVE DATA

190 © OECD 2014  PISA 2012 TECHNICAL REPORT

Table 9.22 Number of Rasch model items retained in the hybrid/IBCI model

Total number of items Rasch # retained Rasch % retained

Mathematics 179 77 43%
Reading 223 42 19%
Science 133 19 14%
Financial Literacy 40 15 38%

Table 9.23 summarises the improvement in model fit for the domains of reading, mathematics and science. The table shows 
the results for the Rasch /partial credit model, the two-parameter logistic /generalised partial credit model, and the “hybrid” 
model (Rasch/two-parameter logistic/generalised partial credit model), with one set of item parameters for all countries, 
and a model that accounts for IBCI by releasing some country-specific parameters. These results are based on all cycles 
from 2000-2012 combined for the three domains. In each domain, the IBCI model fits best (as characterised by the BIC), 
followed by the two-parameter logistic /generalised partial credit model, the hybrid model, and the Rasch /partial credit 
model. This can also be seen in the concomitant decrease in the number of items-by-country-by-cycle with root mean 
square deviation values greater than 0.15. Approximately 3% of the items in mathematics, 7% of the items in reading and 
6% of the items in science did not fit the Rasch model in one or more countries. On the other hand, around 1% of the items 
exhibit misfit in reading for the IBCI model and less than 0.1% of the items exhibit misfit in mathematics and science under 
the hybrid/IBCI model. For all subsequent analyses, the item parameter estimates from the hybrid/IBCI model were used.

Table 9.23 Changes in model fit summary

Rasch/PCM 2PLM/GPCM Hybrid IBCI

Maths
# of item-country-cycle 
deviations 549 397 415 4
BIC 26400730 26118134 26175012 25946516

Reading
# of item-country-cycle 
deviations 1233 960 962 250
BIC 30968125 30675531 30691983 30472304

Science
# of item-country-cycle 
deviations 921 717 708 8
 BIC 29908518 29585732 29591677 29302806

Total item-country-cycle values: maths = 15,795, reading = 18,603, science = 16,223
Deviations defined as RMSD values > 0.15

Fit of the Rasch Model and two-parameter logistic model for new science and collaborative problem 
solving items in the field trial
After examining the fit of the new modelling approach developed for PISA 2015 to data from past PISA cycles (2000-
2012), described in  the sections above, the  fit of  the Rasch/partial credit model versus the  two-parameter logistic/
generalised partial credit model was tested for new science and collaborative problem solving items using data from 
the 2015 field trial (note that this comparison was done in  the field trial in preparation for  the main study; hence, 
no similar comparison was needed in the main study). The aim was to investigate whether the two-parameter logistic /
generalised partial credit model shows a better fit, as would be expected.

While the item parameters for trend items in the field trial were fixed to those obtained from the reanalysis of previous 
PISA cycles (2000-2012), the new science and CPS items had to be scaled based solely on the field trial data. For these 
new scales, both a multigroup Rasch/partial credit model was estimated as well as a multigroup two-parameter logistic 
/generalised partial credit model. The concurrent calibration (multiple-group IRT model) was used to evaluate whether 
items were working in the same way across country-by-language groups or if there were item-by-group interactions. 
Both model approaches were compared (see Table 9.24) and it was found that the two-parameter logistic /generalised 
partial credit modelshowed better overall model fit than the Rasch/partial credit model. The item selection for the main 
survey was based on the two-parameter logistic /generalised partial credit model due to the improved model fit and 
because more information about each single item was provided.

Table 9.24
Comparison of the Rasch/ partial credit modeland the two-parameter logistic /generalised partial 
credit model for new items in the PISA 2015 field trial

Likelihood A-penalty AIC B-penalty BIC

CPS

RM/PCM -985477.57 686 1971641.15 3877.09 1974832.24
2PLM/GPCM -971208.69 994 1943411.38 5617.83 1948035.21
Science

RM/PCM -2215483.30 1266 4432232.60 7406.46 4438373.06
2PLM/GPCM -2192778.99 1698 4387255.97 9933.78 4395491.75
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Linking PISA 2015 to previous PISA cycles
The goals of the PISA 2015 linking design centred on linking different test forms and assessments modes (paper- and 
computer-based) within the  PISA  2015 cycle for  comparability across countries and linking previous PISA cycles 
to PISA 2015 for comparability across assessment cycles and trend reporting.

To obtain comparable test results across the years in each domain, it was important that all items in a given domain 
were calibrated on one common scale. To establish a common scale, the items had to be linked together across test 
forms (subset of items), assessment modes (paper- and computer- based), and PISA cycles. This was achieved by using 
common sets of items in the different booklets and assessment modes. Moreover, the PISA 2015 linking design included 
items from the previous studies and links all PISA cycles (2000 through 2015). Note that for the scaling in the 2015 main 
survey, combined PISA data sets from 2006-2015 were used for parameter estimation. The new part of the science scale 
and collaborative problem solving as a new domain comprised only computer-based items (due to the nature of the 
items); because collaborative problem solving is a new domain, there are no  linking items. Financial literacy, as an 
optional domain, was only linked back to 2012 (the first time financial literacy was assessed) in the 2015 main survey 
scaling.

In summary, the computer-based assessments included all domains and all linking/trend items (providing a link between 
paper- and computer-based testing and between the current and previous PISA cycles) as well as new items for science 
and collaborative problem solving. The computer-based assessments comprised the following item sets:

•	Reading, mathematics and financial literacy: intact clusters of paper-based items from previous cycles, reauthored 
for computer delivery

•	Science: intact clusters of paper-based items from previous cycles, reauthored for computer delivery, plus new items 
developed for computer delivery only

•	Collaborative problem solving: new items developed for computer delivery only.

Thus, all trend items were administered in both the paper- and computer-based assessments as well as in different test 
forms (across the different assessment modes). Within both assessment modes, all items were linked together in a booklet 
design, which relates to trend items in the paper-based assessments and the trend and new items in the computer-based 
assessments. The mode effect study allowed identification of scalar and metric invariant items across computer- and 
paper-based testing and thus allowed linking across modes. The inclusion of all non-released items in the new assessment 
design strengthened the construct coverage of the major and minor assessment domains and allowed linking the new 
science domain against all trend material dating back to the last major domain round in science, assessed in 2006.

The improved linking design established in 2015 (see Chapter 2) made it possible to calibrate all trend and new items 
answered by different students in different test forms and assessment modes on one common scale for each domain. 
This was done within the item calibration utilizing the approach described in the sections The IRT models for scaling, 
national and international item calibration and Handling of item-by-country/language and item-by-mode interactions.

To place the PISA 2015 results and the historic PISA results from cycles 2012 to 2006 on the same scale, a concurrent 
item calibration was used. This linking approach is different from the mean/mean IRT linking approach used in prior PISA 
cycles. For trend items that did not show mode effects, item difficulty, and slope parameters in the main survey were 
constrained to have the same parameters as the corresponding paper-based items and items found in the historical data, 
establishing scalar invariance for a majority of items in each domain. For the remaining items, metric invariance was 
established so that a common slope parameter is shared across cycles and across modes in 2015. This approach created 
a scale that allowed for the comparison of PISA 2015 main survey and historic PISA results.

For financial literacy, a slightly different approach was taken by linking the 2015 main survey data not only to the data 
from 2012 but from the 2015 field trial. The reason is that not every country took financial literacy in 2015, and only 
a few countries took the assessment in both cycles (2012 and 2015). Moreover, the administration of financial literacy 
in 2015 was based on the data collection from a subset of students in a second (afternoon) testing session. Consequently, 
linking through the 2015 field trial data, where a larger group of countries took both the computer- and paper-based 
versions, provides a more defensible scale.

More detailed information about the test design for PISA 2015 can be found in Chapter 2 and more information about 
the linking and IRT scaling in general and for each domain is given in the relevant sections of Application of IRT and 
population models to PISA above.
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Linking error in PISA 2015
PISA accounts for student sampling error, measurement error of ability estimates and linking error. An evaluation of the 
magnitude of  linking error can be  accomplished by  considering differences between reported country results from 
previous PISA cycles and the transformed results from the rescaling. Recall that prior PISA rounds used a separate item 
calibration for each cycle. That is, the same items, if repeatedly used in 2000, 2003, …, 2012 received slightly different 
statistical quantities as estimates of  their difficulty, especially because they would be  tested together with other sets 
of items, or as part of a smaller (minor domain) or larger (major domain) set of items.

This variability over time and different PISA assessment designs (minor/major, etc.), and also the fact that we do not “know” 
the difficulty of items exactly, introduces a source of uncertainty in the results. It becomes apparent as soon as there are 
multiple samples that were collected successively, as the item difficulty parameter estimates tend to be (slightly) different 
every time new data is collected. This, in turn has an effect on the results reported to countries, and it is (and was in previous 
cycles) quantified in the linking error. This linking error is a part of the variability of country means that is due to the tests 
not being exactly the same and having different samples of students in the estimation of item parameters.

The extended analytical approach used in 2015 allows us  to revisit the  linking error and to  reduce it when moving 
forward with the new design, which reduces construct coverage differences between minor and major domains and with 
the concurrent calibration used in the IRT scaling.

In summary, the uncertainty due to linking can result from changes in the assessment design or the scaling procedure 
used, such as:

1.	 different calibration samples used to estimate parameters in different cycles

2.	 the inclusion of items that are unique to each cycle in addition to common items

3.	 changes in the cluster position within the assessment (PISA 2000 was an unbalanced design; later designs balanced 
cluster positions)

4.	 changes in the model used for scaling

5.	 the particular set of trend items that are common to all assessment cycles of interest, and which can be seen as one 
among an infinite set of possible trend items.

In PISA, it is important to note that the composition of the assessment in any two cycles are different due to Major-minor-
minor (M-m-m) domain changes, cluster changes and units released and recombined, framework changes, assessment 
mode changes, and test design changes. Although the reporting model remains a unidimensional IRT model, which 
fits quite well, trend items are modelled based on data collected in different contexts (M-m-m or mode, etc.). Thus, 
estimating linking error for trend measures is a key tool to account for cycle-to-cycle differences. Note again that linking 
error estimates quantify the uncertainty about the link of a scale value compared between two assessment cycles.

In practice, not all of  the sources of uncertainty around scale comparability were quantified or could be accounted 
for  in past PISA cycles (2000-2012). The  linking error estimated in past PISA cycles accounted only for  differences 
across trend items observed for the re-estimated difficulty parameter from one cycle to the next. This approach of linking 
scales by “separate calibrations” includes the following steps. First, calibrations of data from assessment cycle one (Y1) 
and assessment cycle two (Y2) were run separately with trend items and items unique to each assessment cycles; this 
produces two sets of  trend item parameter estimates (one set for each cycle). The mean of Y2 trend item difficulties 
was then transformed to  the mean of  Y1 trend items, in  order to  link the  scales. This mean-only transformation 
is only valid for  the Rasch model, if  it is  indeed fitting the data. Because the same “shift” parameter is added to all 
participating countries in order to equate results to previous assessments, any uncertainty that is  introduced through 
this shift is common to all students and all countries. This is a form of mean/mean IRT linking, a method that operates 
on independently estimated item parameters. This method was applied in past PISA cycles (before 2015), and it relied 
directly on parameter invariance assumptions in the trend item set comparing estimates from two separate calibrations 
across adjacent PISA cycles. In this approach, the variance of differences between trend item estimates from the Y1 and 
Y2 calibration was used to characterise linking error; it can be written as

9.21 

LE< ʹ15 =
1
k

k

i=1

b̂Y1,i − b̂Y2,i

2

∑
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When we assume that each item parameter estimate can be written as the sum of the true parameter and an error term 
unique to the cycle, we can write for both cycles 

9.22 

b̂Y1,i = btrue,i + ûY1,i

and

9.23

b̂Y2,i = btrue,i + ûY2,i .

Assuming that the parameter estimates are unbiased yields that both error terms are vanishing in expectation. A final step 
combines the two separate cycle calibration errors, that is

9.24

êY1,Y2,i = ûY1,i − ûY2,i

Then, the pre-2015 linking error in (9.21) can be written as

9.25 

LEY1,Y2 =
1
k

k

i=1

êY1,Y2,i

2
= V êY1,Y2∑

The expression in (9.25) characterises linking error as the sum of the combined errors of item difficulty estimates obtained 
from two independently calibrated cycles Y1 and Y2  in which the  trend items occur (potentially together with a set 
of items unique to each cycle). In other words, the linking error quantifies the item-by-cycle interactions, not the item-
by-country-by-cycle interactions. The rationale for this approach was that the Rasch model is “symmetric,” which means 
an increase in difficulty of items can be compensated by the same increase in average ability.

This approach to estimating linking error assumes that the variability of item parameters over cycles directly translates 
into variability of person estimates, and that the average effect of parameter differences is zero, since the scales between 
Y1 and Y2 are linked. Thus, all country measures are affected in the same way by linking errors, which results in scale-
level linking error. Moreover, note that there are two sets of trend item parameter estimates for each cycle, but neither 
is correct because both differ from the expected true parameters.

Other contributing factors to linking error are limited sample sizes and the number of unique items in each assessment 
cycle (unique means only administered in  a particular cycle). In  turn, this variability stems from differences in  the 
calibration sample and the sampling variability associated with choosing a calibration sample, and from the presence 
of items that are unique to each cycle. This uncertainty is also related to the particular sample of trend items that were 
used in both cycles.

The above approach is only possible for the Rasch model, as there is only one parameter type incorporated in the linking 
error. In addition, it does not directly take into account the differences due to model error, for example, differential item 
functioning across countries that is not fully accounted for  in modelling. Therefore, a new approach to characterise 
linking error was implemented in PISA 2015 that provides an estimate of the expected uncertainty due to differences 
between older and newer calibrations with more data.

The  premise underlying the  new approach is  consistent with previous PISA cycles, yet it  makes a  different set 
of assumptions that can also be applied to more general IRT model-based linking. As in past cycles, scale-level differences 
across countries for adjacent calibrations are considered as the target of inference. The effect of the variability of two 
calibrations is evaluated at the cross-country level, while within-country sampling variability is not targeted. Moreover, 
sampling variance and measurement error are two separate variance components that are accounted for by plausible 
values and replicate weights-based variance estimation. Taken together, the focus lies on the expected variability on the 



9
SCALING PISA COGNITIVE DATA

194 © OECD 2014  PISA 2012 TECHNICAL REPORT

country level over calibrations, which is  the highest reporting level. The  calibration differences incorporate scaling 
differences, model differences, and different sets of unique items that may lead to somewhat different estimates in the 
two calibrations that can be compared with regard to linking error.

The definition of calibration differences starts from the ability estimates of a respondent v from country g in a target cycle 
under two separate calibrations (e.g. the original calibration of a particular PISA cycle and its recalibration), C1 and C2. 
We can write for calibration C1

9.26 

~θv,C1,g = θv,true + ûC1,g + ~ev

where ûC1,g denotes the estimated country specific error term in C1 and ~ev is the respondent specific measurement error; 
and for calibration C2 accordingly,

9.27 

~θv,C2,g = θv,true + ûC2,g + ~ev

Defined in this way, there may be country level differences in the expected values of respondents based on the calibration. 
These are a source of uncertainty and can be viewed as adding variance to country level estimates. Given the assumption 
of a country level variability of estimates due to C1 and C2 calibrations, for the differences between estimates we find,

9.28 

~θv,C1,g − ~θv,C2,g = ûC1,g − ûC2,g

And the expectation can be estimated by 

9.29 

E ûC1,g − ûC2,g
~μg,C1 − ~μg,C2 = ∆̂C1,C2,g

Across countries, the expected differences of country means (~μ) can be assumed to vanish since the scales are transformed 
after calibrations to match moments. That is, we may assume

9.30 
G

g=1

E ûC1,g − ûC2,g = 0 =
G

g=1

∆̂C1,C2,g∑ ∑

The variance of the differences of country means based on C1 and C2 calibrations can then be considered the linking 
error of the trend comparing the Y2 cycle means that were used to obtain calibration C2 estimates, and the Y1 cycle 
estimates. The link error can be written as 

9.31 

V[∆̂C1,C2,g ]=
1
G

G

g=1

~μg,C1 − ~μg,C2

2

∑

The main characteristics of the new approach can be summarised as follows:

•	Scale-level differences across countries from adjacent-cycle IRT calibrations C1 and C2 are considered.

•	The effect of the variability of scale-level statistics between two calibrations is evaluated at the country level.

•	Within-country sampling variability is not targeted.

•	Sampling variance and measurement error are two separate variance components that are accounted for by plausible 
values and replicate weights-based variance estimation.
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The use of  this variance component is analogous to  that of previous cycle linking errors. The variance calculated in 
(9.31) is a measure of uncertainty due to re-estimation of the model when using additional data from subsequent cycles, 
obtained with potentially different assessment designs, estimation methods, and underlying databases. In the application 
to  linking error estimation for  the 2015 PISA trend comparisons, a  robust version of  the scale was used. The  robust 
measure of standard deviation that was used is the statistic (Rousseeuw and Croux, 1993). It is defined as

9.32 

Sn = 1.1926* medi medj ( xi − xj )

The differences defined above are plugged into the equation, that is, xi = ∆̂C1,C2,i are used to calculate the linking error 
for comparisons of cycles Y1 and Y2 based on calibrations C1 (using only Y1 data) and C2 (using Y2 data and additional 
data including Y1). The robust estimates of linking error between cycles, by domain are presented in Chapter 12.

The  Sn statistic is  available in  SAS as  well as  the R  package “robustbase”. See also https://cran.r-project.org/web/
packages/robustbase/robustbase.pdf. The Sn statistic was proposed by Rousseeuw and Croux (1993) as a more efficient 
alternative to the scaled median absolute deviation from the median (1.4826*MAD) that is commonly used as a robust 
estimator of standard deviation.

Population modelling in PISA 2015
The population model described earlier (Latent regression model and population modelling) was applied to the PISA 2015 
data after the IRT scaling in order to generate 10 plausible values for each student. Plausible values for students reflect 
the information contained in responses to the items of domains that respondents actually took and the context questionnaire 
variables. Plausible values in all the major domains were generated for all students participating in  the assessment, 
regardless of  whether they were administered items in  that domain. In  addition, in  countries where collaborative 
problem solving was administered plausible values were generated for all students, regardless of the test form they took. 
That is, respondents will be assigned plausible values for domains in which they did not participate, borrowing statistical 
information from students similar in performance on other domains, and in their responses to background data. This 
is enabled through the use of the population model, which uses the covariance information among all domains and also 
nearly all context questionnaire variables, as well as data about the number of not-reached items and other variables 
relevant to predicting proficiency distributions within each country.

Students who received plausible values for the domain(s) they did not take, but these values have a larger uncertainty 
(measurement error) than the plausible values for the other domains (that were administered to them). The measurement 
error has to be taken into account when dealing with the plausible values in secondary analyses. By using repeated 
analysis with each of  the 10 plausible values, the measurement error will already be  reflected in  the analyses, and 
the final aggregation of results can be conducted in a way that the variability across the 10 analyses is properly reflected

The  following sections provide information about how the  population model was applied to  PISA  2015 data, how 
plausible values were generated, and how plausible values can be used in further analyses.

Treatment of students with fewer than six test item responses
This section addresses the  issue of  students who provided background information but did not completely respond 
to the test items. A minimum of six completed items per domain was necessary to assure sufficient information about 
the proficiency of students. In general, there are very few students3 (0.04%) with responses to fewer than six test items 
in at least one of the core test domains (reading, mathematics, science and collaborative problem solving). These cases, 
identified across the core domains, were initially removed from the first round of the population modelling for the core 
domains as well as for financial literacy. More precisely, students with responses to fewer than six test items per domain 
were not included in a first run of the population modelling (with regard to the regression model) in order to obtain 
unbiased Γ and Σ. In a second analysis step of population modelling, the regression parameters were treated as fixed 
to obtain plausible values for all cases, including those with fewer than six responses to test items.

For the science domain, students had to respond to at least six items in one of the subscales within a science dimension 
or subscale group (competency, system, knowledge) to be included in the latent regression model (note that a population 
modelling was done on the level of scientific subscale dimensions).

https://cran.r-project.org/web/packages/robustbase/robustbase.pdf
https://cran.r-project.org/web/packages/robustbase/robustbase.pdf
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In PISA 2015 all consecutively missing responses at the end of a cluster were treated as “not reached” and thus coded 
as missing response (similar to “not administered” items); hence, they were ignored in the model. This scoring method 
is important with regard to the population model described (Data yield and data quality) since the population model 
is based on responses to the background questions and the test items.

Handling of item-by-country/language interactions
The  population model was estimated separately for  each country, with the  exceptions of  Belgium (Dutch, French), 
Canada (English, French), Israel (Hebrew, Arabic), and Qatar (Arabic, English) where the model was estimated separately 
by  language. Item parameter files for  test items, including common and unique item parameters, were obtained 
from the  IRT scaling (described earlier in  this chapter. Because the  IRT scaling used a  multiple-group (concurrent) 
calibration method, an  item parameter file was created for  each country. If  there were larger language groups that 
allowed separate evaluation of item fit, these item parameter files were merged so that one file resulted for each country, 
except for Belgium, Canada, Israel, and Qatar, which received two separate item parameter files each (one for each 
main language); the  language groups of  those countries were introduced separately in  the population modelling. 
By incorporating country-by-language group item parameter files into the analyses, the population modelling accounted 
for unique item parameters and thus for item-by-country and item-by language interactions.

The  country-specific conditioning model assures that the  latent regression is  based only on  data obtained within 
the same country version for background questionnaire and test (country-by-language where feasible). This ensures that 
the unique relationship between background variables and proficiency variables can be represented for each country 
without bias. The use of country-specific item parameter files that contain a large number of common/international item 
parameters ensures the comparability of the plausible values.

Population model for the domains
To  generate plausible values for  the domains of  reading, mathematics, science, financial literacy and collaborative 
problem-solving, multidimensional population models were used. The  multidimensional models included reading, 
mathematics and science, collaborative problem solving (computer-based assessment mode only) and financial literacy 
(if available).

The plausible value variables for  the domains follow the naming convention PV1xxxx thru PV10xxxx, where “xxxx” 
takes on the following form:

•	READ for reading

•	MATH for mathematics

•	SCIE for science

•	CLPS for collaborative problem solving

•	FLIT for financial literacy

Population model for the science subscales
There were several subscales reported for Science. These were knowledge scales (content; and [rocedural and epistemic), 
competency subscales (explain phenomena scientifically, evaluate and design scientific enquiry, and interpret data and 
evidence scientifically) and system subscales (physical; living; and earth and space).

To generate plausible values for the science subscales, multidimensional population models were used. In total, three 
different multidimensional population models were used within each country:

•	Model 1: reading, mathematics, collaborative problem solving (computer based assessment mode only) and the science 
knowledge subscales

•	Model 2: reading, mathematics, collaborative problem solving (computer-based assessment mode only) and 
the science competency subscales

•	Model 3: reading, mathematics, collaborative problem solving (computer-based assessment mode only) and 
the science system subscales

The  aim of  generating plausible values for  the different science subscales, is  to represent a  more nuanced picture 
of important aspects within the overall science framework. These subscales allow for investigations of different aspects 
within the science domain, thus, exploring further the variability of skills across participating countries. Table 9.25 gives 
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an overview of the distributions of 85 trend and 99 new items (184 in total) to the three scales knowledge, competency, 
and system as well as the eight subscales: content; procedural and Epistemic; Explain Phenomena Scientifically; Evaluate 
and Design Scientific inquiry; interpret data and evidence scientifically; physical; living; earth and space. It  should 
be noted that the three science subscales types are based on a three-way classification of the same 184 items (distributed 
into the 2+3+3=8 subscales) and thus cannot be compared among each other, since these contain the  same items, 
classified in three different ways.

Table 9.25 Distribution of 85 trend and 99 new items to the science scales and subscales

Knowledge Competency System

Subscales Trend New Subscales Trend New Subscales Trend New

Content 51 47
Explain 
phenomena 
scientifically

41 47 Physical 28 33

Procedural and 
epistemic (merged)

34

(24+10)

52

(36+16)

Evaluate and 
design scientific 
enquiry

16 23 Living 39 35

Interpret data 
and evidence 
scientifically

28 29 Earth and space 18 31

Total no. of trend/
new items 85 99 Total no. of 

trend/new items 85 99 Total no. of 
trend/new items 85 99

Total no. of items 184 Total no. of items 184 Total no. of items 184

Note: After the population modelling was finished and results reported to countries, the science experts recommended the reclassification of one item from the subscale “interpret 
data and evidence scientifically” to the subscale “explain phenomena scientifically” (see Chapter 2 for an updated item table). This change will be addressed in future PISA cycles 
but is not reflected in the PISA 2015 analyses.

The information about the eight subscales (2+3+3 subscales) was included in the population modelling. For example, 
the  population model for  scientific knowledge included the  information about which items belonged to  the two 
subscales “content” and “procedural and epistemic.” Please note that for science, three additional population models 
(one for each of  the three classifications of  items) were computed in addition to science as a main scale. However, 
10 plausible values were generated for each of the eight subscales.

The plausible value variables for the Science subscales follow the naming convention PV1xxxx thru PV10xxxx, where 
“xxxx” takes on the following form:

•	SKCO		  Science subscale – Content (knowledge)

•	SKPE		  Science subscale – Procedural and epistemic (knowledge)

•	SCEP		  Science subscale – Explain phenomena scientifically (competency)

•	SCED		  Science subscale – Evaluate and design scientific inquiry (competency)

•	SCID		  Science subscale – Interpret data and evidence scientifically (competency)

•	SSPH		  Science subscale – Physical (system)

•	SSLI		  Science subscale – Living (system)

•	SSES		  Science subscale – Earth and science (system)

Generating plausible values
Plausible values are multiple imputations of proficiency values based on information from the test items and information 
provided by  the students in  the background context questionnaire (BQ). Plausible values are used to  obtain more 
accurate estimates of group proficiency than would be obtained through an aggregation of point estimates. A more 
detailed description is given in Latent regression model and population modelling above as well as in Mislevy (1991), 
Thomas (2002), and von Davier, Sinharay, Oranje, and Beaton (2006).

In  PISA, the  computation of  group-level reporting statistics – involving scores in  each of  the domains (reading, 
mathematics, science, financial literacy and collaborative problem solving) as well as  science subscales – is  based 
on 10 independently drawn plausible values for  each of  the test domains and subscales for  each student. Each set 
of plausible values is equally well designed to estimate population parameters; however, multiple plausible values are 
required to represent the uncertainty in the domain measures appropriately (von Davier, Gonzalez, and Mislevy, 2009). 
The statistics based on scores are always computed at population or subpopulation levels. They should never be used 
to draw inferences at  the individual level. Detailed information on  the computation and the use of plausible values 
in analyses is given earlier in this chapter (in Latent regression model and population modelling and Analysis of data 
with plausible values).
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For the population modelling and the calculation of plausible values for the scales of PISA, the computer programme 
DGROUP (Rogers et al., 2006) was used.

A normal multivariate distribution was assumed for P(θj|xj, yj, Γ, Σ), with a common variance, Σ, and with a mean given 
by a linear model with slope parameters, Γ, based on the principal components of several hundred selected main effects 
from the vector of context questionnaire variables.

The  item parameters for  the test items were obtained from the  concurrent item calibration described earlier in  this 
chapter (see The IRT models for scaling, National and international item calibration and Handling of item-by-country/
language and item-by-mode interactions) using the data from past PISA cycles (2006-2012) and PISA 2015 as described 
above. The  result of  the concurrent calibration is  a scale that provides comparable results across the different PISA 
cycles. To calculate the plausible values for PISA 2015 only, the item parameters for items administered in PISA 2015 
were used in the population modelling.

The background variables included nearly all student questionnaire data, school ID, gender, and the number of not-
reached items, among others. A description of the different sections of the background data can be found in Chapter 3 of 
this report. All variables in  the context questionnaire were contrast coded before they were processed further in  the 
population model. Contrast coding allows for  the inclusion of  codes for  refused responses, avoiding the  necessity 
of linear coding. The contrast coding scheme is reproduced in Annex B. The increased number of variables obtained 
through contrast coding is  substantial. To  capture most of  the common variance in  the contrast-coded background 
questions with a reduced set of variables, a principal component analysis was conducted. Because each population 
can have unique associations among the background variables, a single set of principal components was not sufficient 
for all countries included in PISA. As such, the extraction of principal components was carried out separately by country 
to take into account the differences in associations between the background variables and cognitive skills. In PISA, each 
set of principal components yc (or conditioning variables) was selected to include 80 percent of the variance, or not 
to exceed a number of principal components greater than 5% of the raw sample size, with the aim of explaining as much 
variance as possible while at the same time avoiding over parameterization of the model.

Principal component scores based on nearly all (contrast coded) background variables were used in PISA, including 
international variables (collected by every participating country) as well as national background variables (country-
specific variables in addition to the international variables).

Students with responses to fewer than six test items per domain were not included in a first run of the regression model 
in order to obtain unbiased Γ and Σ. In a second analysis step of population modelling, the regression parameters were 
treated as  fixed to obtain plausible values for all cases, including those with fewer than six responses to  items (see 
the earlier section Treatment of students with fewer than six cognitive item responses for more information).

The financial literacy plausible values for the students who took this domain are based on a latent regression model that 
included the general background questionnaire variables plus the additional financial literacy background questions that 
were administered together with the financial literacy test items. A separate latent regression model based on the general 
background questionnaire variables alone was used for the remaining students who did not take the financial literacy 
test items as well as the financial literacy background questions.

Students received plausible values for each test domain administered in their country according to the test design that 
applied in a particular country (paper- versus computer-based assessment, financial literacy selected or not; collaborative 
problem solving selected or not; see Chapter 2  for more information on  the test design). This means, students also 
received plausible values for test domains that were not administered to them. The same applies to students who took 
the Une Heure (UH) test design.
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Note

1. A subset of cases from certain countries had to be excluded from the IRT calibration due to adjudication and data quality issues 
(please see Chapter 14 for more information).

2. Note that the random effect in Model 9.16 could be adjusted for each country separately, so this model picks up country differences 
as well. The similarity between the fit of models 9.16 and 9.15 shows, that no country-specific constraints are needed.

3. Note that a student was only considered a “respondent” and given an analysis weight if he or she responded to at least one test item 
and a certain amount of the context questionnaire items, or if he or she responded to at least half of the test items in cases of providing 

no context questionnaire information.
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