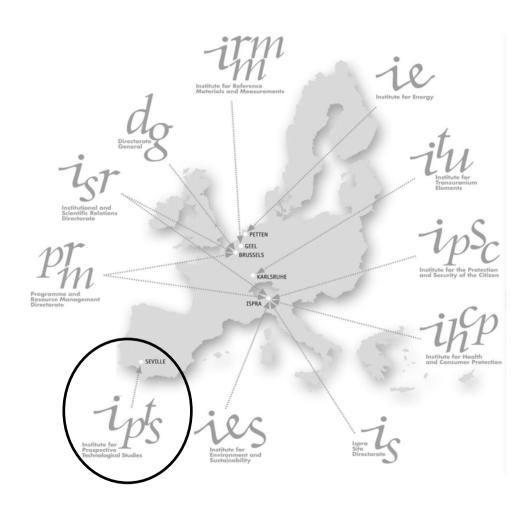


Case study: Clinical Implementation of HER-2 and TPMT testing in Europe

Eleni Zika

European Commission, JRC-IPTS Sustainability in Agriculture, Food and Health Unit

Presentation Outline

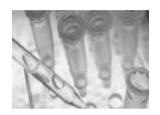

Clinical implementation of Pharmacogenomics in Europe

- Background
- Study design and Methodology
- > Results
- > Conclusions

Institute for Prospective Technological Studies

IPTS:

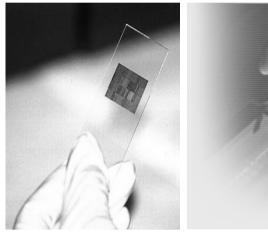
- ➤ one of the seven institutes of DG JRC of the European Commission
- ➤ provides customer-driven support to the EU policy-making process
- monitors and analyses S&T developments, their cross-sectorial impact and their policy implications



Background

Pharmacogenomics (PGx)

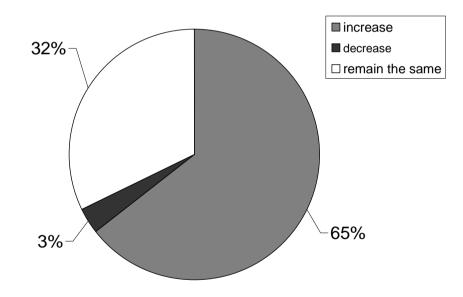
- Drug development
- Personalised medical care


IPTS prospective study

- ➤ Mapping current R&D status
- ➤ Assessing clinical impact
- Comparing regulatory and quality assurance frameworks

Mapping current R&D

Current R&D status (1)


Public Sector

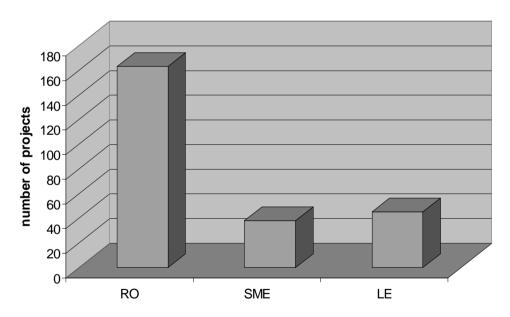
- Europe counts 142 public research groups
- Pharmacogenetics Networks are established in the US and Japan

Private Sector

- 47 SMEs make up the core of the PGx sector (60% of these are based in USA)
- High turn over most see PGx as a drug development tool

Development of research staff in the last 5 years

Current R&D status (2)


Interaction of Academia and Industry

- Collaboration is limited
- Experts from academia complain about the lack of access to data

Barriers to research

- Availability of samples and data protection requirements
- High cost of PGx work

Number of co-operation projects in 2003

Assessing clinical implementation

Study Design: 2 cases – 4 countries

- HER2
 - efficacy of trastuzumab-Herceptin
- TPMT
 - safety of thiopurine drugs
- 4 EU countries
 - Germany
 - UK
 - Ireland
 - Netherlands

<u>Methodology</u>

> Desk research

> Interviews

Implementation Levels are Low

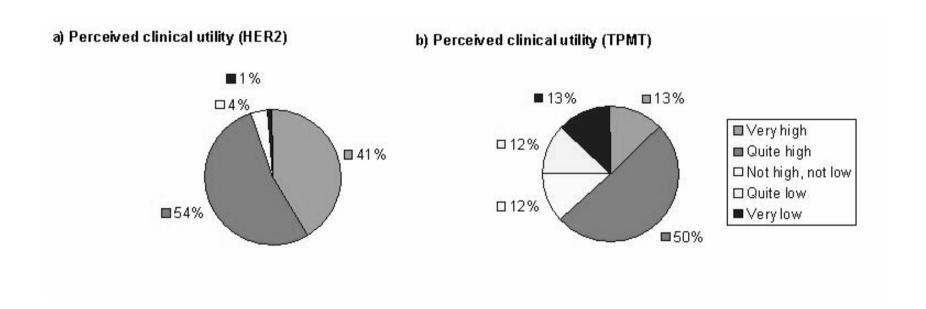
Case	Treatment with NO prior testing	Treatment without testing all patients	Consistent Use
HER2	8%	8%	84%
Total number of respondents: 77			
TPMT	53%	35%	12%
Total number of respondents: 34			

Main Factors Influencing Clinical Uptake (1)

- The role of industry
 - Market-size
 - Roche-HER2 example vs TPMT
- Education
 - Use and interpretation

Main Factors Influencing Clinical Uptake (2)

- Reimbursement
 - Difficult or unclear


- Liability
 - TPMT example

Other Factors Influencing Clinical Uptake (1)

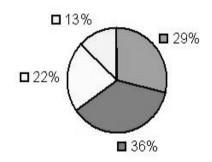
Clinical utility/validity

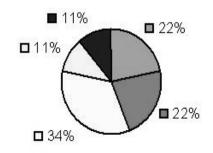
Other Factors Influencing Clinical Uptake (2)

- Infrastructural
 - Communication with lab (varies by country)
 - Sample handling (sending, storage etc.)
- Social
 - No major social barriers for the two case studies investigated

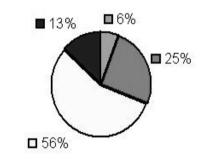
Cost-effectiveness of PGx in clinical practice

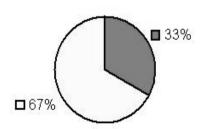
- Important for levelling off barriers
- Economic implications of PGx are less studied





Perceived vs. Calculated Cost/Benefit


a) Perceived CB (HER2)


c) Calculated CB (HER2)

b) Perceived CB (TPMT)

d) Calculated CB (TPMT)

- Benefits much higher than costs
- Benefits a little higher than costs
- Benefits and costs equal
- □ Costs a little higher than benefits
- Costs much higher than benefits

Regulatory Frameworks

- Interviews conducted in 4 countries studied
- New capabilities are being developed at regulatory agencies (EMEA and FDA) to address PGx related needs
- Currently there is no regulatory framework imposing consistency of testing in Europe
- Challenges include biomarker validation and use of PGx data

<u>Summary</u>

- Clinical implementation of HER2/TPMT testing is incomplete in spite of cost-effectiveness.
- Main influencing factors include:
 - industry
 - lack of training
 - reimbursement procedures
 - liability issues
- Additional work is required to extend findings to other PGx cases.

Acknowledgements

IPTS

Dolores Ibarreta Emilio Rodriguez-Cerezo Adinda Woelderink Per Sørup

ESTO

Michael Hopkins (SPRU, UK)
Sybille Geisser (ISI, Germany)
Jim Ryan (CIRCA, Ireland)
Christien Enzing (TNO, Netherlands)

www.jrc.es

Contact: Dolores.IBARRETA@cec.eu.int

