

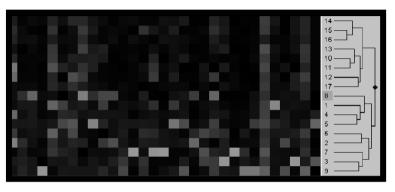
The Way Ahead.™

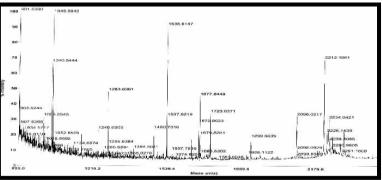
Diagnostic platforms and approaches for pharmacogenetics testing: Meeting the predicted demands and integrating bioinformatics to facilitate test interpretation

Janet A. Warrington, Ph.D.
Vice President
Emerging Markets and Molecular Diagnostics
Research and Development
Affymetrix Inc.

Overview

- Diagnostic platforms and approaches for pharmacogenetics testing
- Predicted demands for pharmacogenetics testing
- Integration of bioinformatics to facilitate test interpretation


Definitions


- Pharmacogenetics Research: Discovering why different people respond to drugs differently.
- Pharmacogenetics Testing (Dx): Measuring likelihood of having an adverse drug response or therapeutic failure.

There are two major categories of pharmacogenetics knowledge

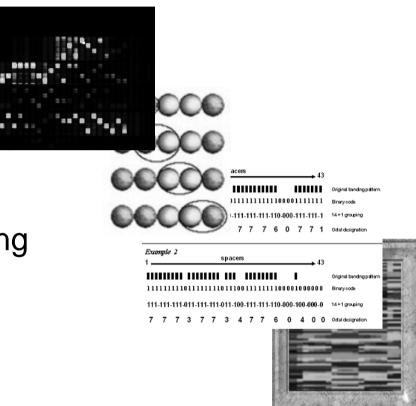
- Phenotyping
 - Pharmacokinetics
 - Pharmacodynamics
 - Gene expression
 - Protein function
 - Clinical outcome
- Genotyping
 - Polymorphism
 - Gene copy number

Research and development path for diagnostic tests

Research Diagnostics

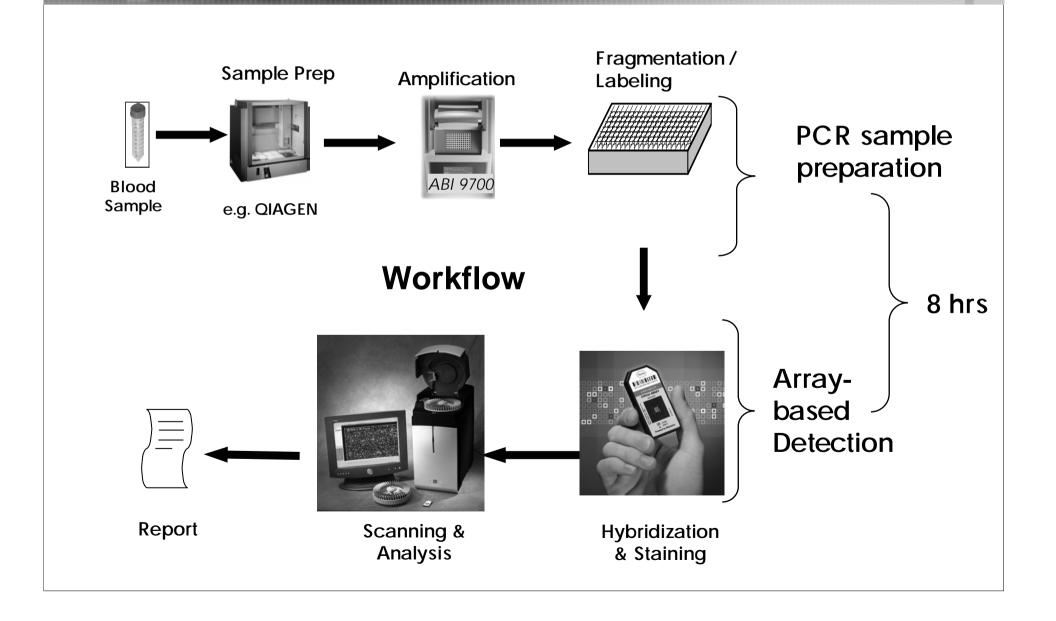
iscovery	Design	-clinical &	roduct
	timization	nical Trials	aunch
Exploratory Whole genome SNP discovery	Determine Dx signature Design Test prototype	Confirmation testing Retrospective studies Prospective studies Collect regulatory data	Regulatory approval Product release

Biologically relevant =


Clinically relevant

PGe research has a direct connection to clinical relevance

Genotyping platforms for pharmacogenetics diagnostic tests


- Microarrays
- Beads
- RFLP
- Gel based sequencing
- Mass spectroscopy

Often a combination of methods is used

The AmpliChipTM CYP450 combines PCR and microarray technology

PGe is in it's infancy: There are many opportunities and challenges

Microarrays

Gels

Metrics

Terminology

Standard controls

Best Practices

Data interpretation

Biomarker validation

Data standards

Data sharing

Mass
Spectroscopy

Beads

Incremental and doable: International efforts are underway

- Establish standard controls and guidelines
 - External RNA Controls Consortium
 www.affymetrix.com/scientific community/Standards
 Program, and www.NIST.gov
 - EuroGentest www.eurogentest.org
 - International Meeting of Clinical and Laboratory Genomic Standards <u>www.imclgs.org</u>
 - Clinical and laboratory standards institute <u>www.clsi.org</u>
 - IBM partnerships

Overview

- Diagnostic platforms and approaches for pharmacogenetics testing
- Predicted demands for pharmacogenetics testing
- Integration of bioinformatics to facilitate test interpretation

Challenge: Managing expectations

The Way Ahead.™

1994

2001

2005

Why the hope and hype?

- Rx expenditure: 400.6 <u>B\$</u> worldwide, 2002
- Incidence of serious ADR: 6.7% of hospitalized patients
- Incidence of fatal ADR: 0.32% of hospitalized patients
- Costs associated with drug related problems 177.4 <u>B\$</u>, US, 2000

http://www.imshealth.com, Guzey and Spigset 2004

Increased awareness drives demand for access to information

- Predictive adverse drug response and/or therapeutic failure screening
 - P450 drug metabolism genes, 2D6,2C19 etc. (22% top 50 Rx)
 - Thiopurine methyltransferase, TPMT (6-mercaptopurine)
 - UDP glucuronosyltransferase, UGT1A1 (irinotecan)
 - Vitamin K epoxide reductase (warfarin)
- Companion diagnostics
 - Gleevec inhibition of tyrosine kinase encoded by bcr-abl fusion
 - Herceptin inhibition of Her 2/neu receptor in breast cancer
 - Aminoglycoside antibiotics to treat Pseudomonas
 - EGFR activating mutations, gefitinib
 - Thymidylate synthase promoter, fluorouracil
 - P53/MDM2 allelic variants, cancer
- Clinical trials
 - Screening cohorts

Roche AmpliChip™ CYP450 Array

FDA cleared December 2004

Roche AmpliChip™ CYP450 Array

Roche AmpliChip™ CYP450 Test (IVD)

Overview

- Diagnostic platforms and approaches for pharmacogenetics testing
- Predicted demands for pharmacogenetics testing
- Integration of bioinformatics to facilitate test interpretation

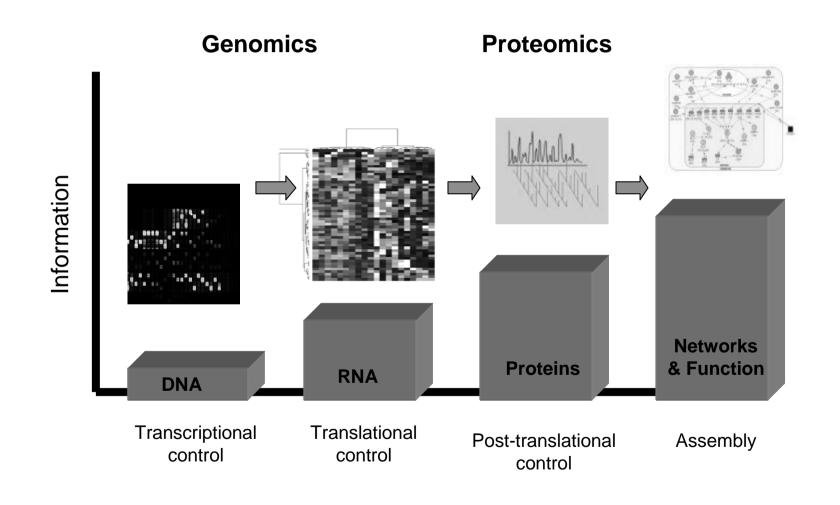
Why is integration needed? Key drivers

Improved care

- 1 in 4 MDs surveyed felt scope of care they are expected to provide is beyond their knowledge base
- Unable to maintain expert knowledge at rate new clinical information is produced

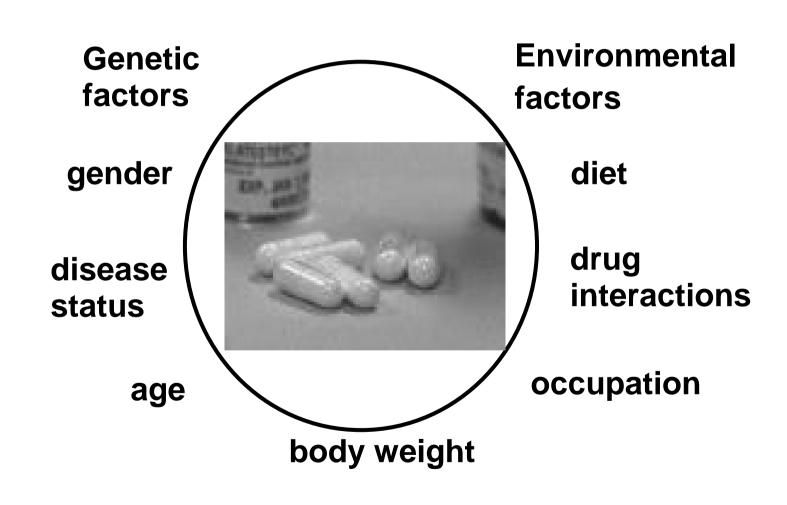
Error reduction

Institute of Medicine report: 98,000 deaths (US) attributed to medical error annually


Cost reduction

- Laboratory services = 3-5% hospital budget
- Impacts 60-70% of costs in admissions, discharges timing, medications

Laposata M., 2005, St. Peter FR., 1999, Kohn LT., 2000



AFFYMETRIX Information flow and density: Optimizing test design and results reporting

Integrating clinically relevant information for test and treatment decision making

Innovative information approaches are needed

- Identify end-user/s
- Data management
 - Two-way, three-way, four-way information flow
 - Clinician: clinical laboratory: pharmacy: patient
- Consensus on terminology, metrics, quality, content, portability, access
- Address security and privacy requirements
- User friendly: low activation energy
- Regulatory and reimbursement utility

Challenges to be addressed

- Data has utility in multiple settings
 - Can we develop databases versatile enough to address needs in laboratory, pharmacy, clinician's practice?
 - Can we incorporate information that can be used for assessing test and platform reliability?
- What information should be/can be provided to the clinician prior to decision-making?
- What is the role of instrument and diagnostic manufacturers, laboratories, pharmacists and others in providing information needed by clinicians?
- How to address the need? Shortage of expertise
 - Poor/no reimbursement for clinical interpretation (US)
 - "Clinical turf" perception could slow acceptance

Laposta M., 2005, Lubin I., personal communication

Current initiatives

- CDC*
 - Centers for Disease Control, USA
 - Model study: Cystic fibrosis
 - What information impacts decision making
 - Timing of information exchange
 - Laboratories, clinicians, payers
- METI, ISO, FDA, NCI, IBM, AT&T...others?
- Harmonization? Desirable and possible.

*Ira Lubin, Joe Boone

Conclusions

- Technologies enabling access to complex information will continue to evolve
- International efforts to build consensus on platform independent controls and guidelines are key to adoption and implementation of new tests
- Timely commitment of resources to the development of model systems for integrating molecular and clinical information is needed
- Education is essential and timing sensitive