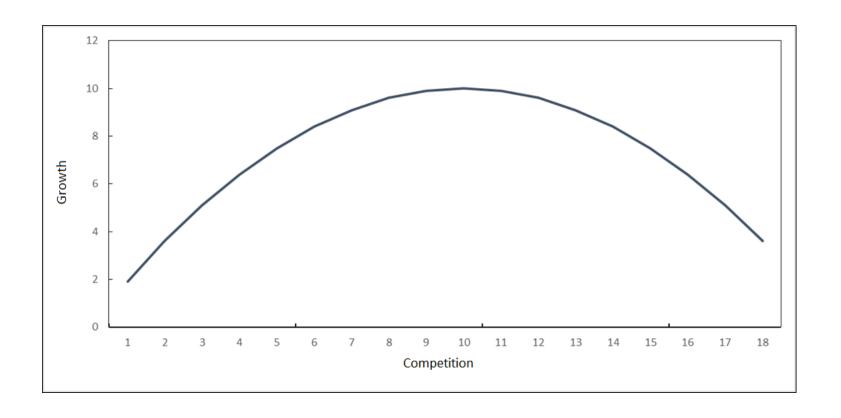

Rethinking competition policy and industrial policy

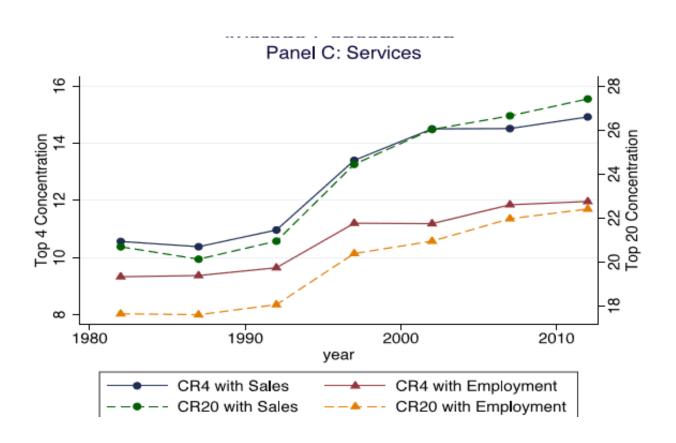
Philippe Aghion


Schumpeterian growth theory

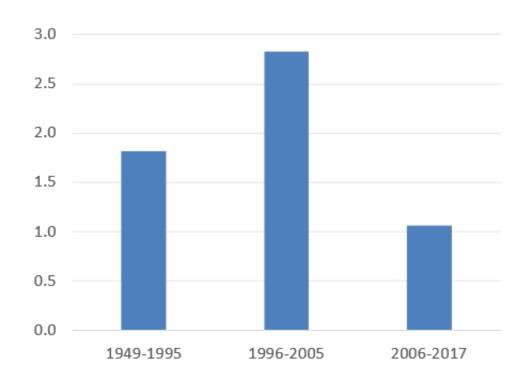
- Long-run growth driven by innovations
- Innovations result from entrepreneurial activities motivated by prospect of innovation rents
- Creative destruction: new innovations displace old technologies

Competition, growth and distance to frontier

Competition and growth: the inverted-U relationship


Questions

- Why and how should we reform competition policy?
- Why and how do we need industrial policy?


Questions

- Why and how should we reform competition policy?
- Why and how do need industrial policy?

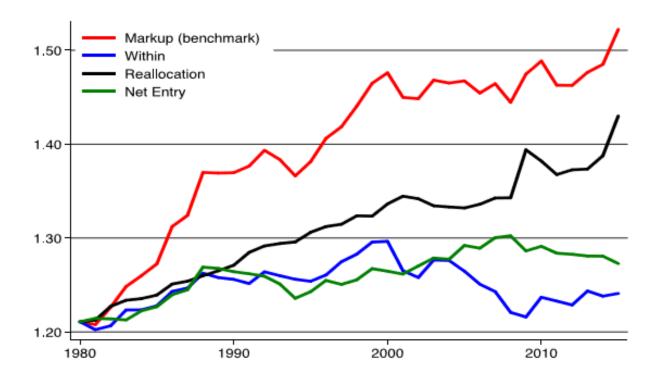
RISING CONCENTRATION IN SERVICES

RISE AND DECLINE IN TFP GROWTH

Candidate explanations

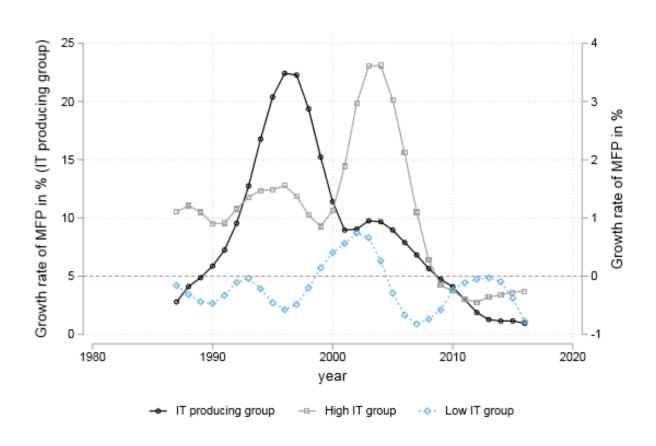
- Deterioration of competition policy (Philippon)
- Competition policy did not properly adapt to IT digital revolution

Problems with Philippon's explanation

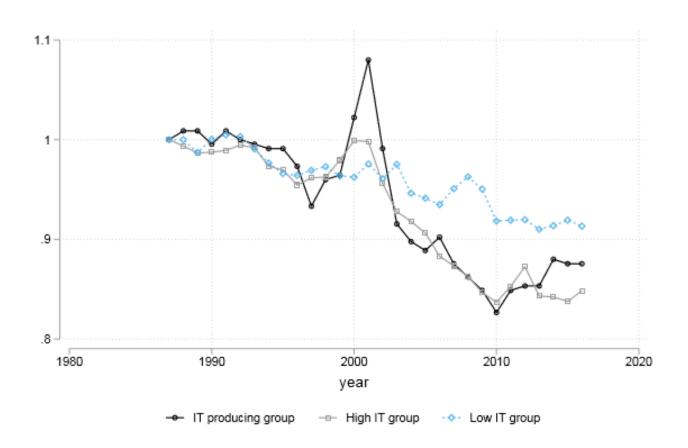

- Does not explain the growth upsurge in 1995-2005 at a time where concentration was already increasing at accelerated rate
- Cannot explain why fall in labor share and rise in markups is not so much within firms but rather between firms

DECLINING LABOR SHARE (MOSTLY DUE TO COMPOSITION)

Cumulative change over specified period (ppt)


	1982 – 2012			92–12	92-07	
	MFG	RET	WHO	SRV	FIN	UTL
$\Delta \frac{\text{Payroll}}{\text{Sales}}$	-7.01	-0.79	0.19	-0.19	3.25	-1.89
within	-1.19	3.74	4.01	2.43	6.29	0.58
between	-4.97	-4.03	-4.38	-0.44	-3.62	-2.39

WITHIN FIRM MARKUPS



Source: De Loecker, Eeckhout and Unger (2018).

TFP GROWTH BY IT INTENSITY

Labor share by IT intensity

Hence

- Adapt competition policy to IT and digital revolutions
- « Competition Policy for the High-Technology economy », Richard Gilbert, MIT Press, 2020
- Take a more dynamic approach to competition policy, taking entry and innovation, and market contestability or the lack of it, better into account;

Questions

- Why and how should we reform competition policy?
- Why and how do we need industrial policy?

Introduction

- Particularly since the 1980s, economists have come to dislike industrial policy
- It focuses on big incumbents ('national champions), thereby stifling competition
 - Anne Krueger
 - Acemoglu et al
- Governments are not great at 'picking winners'.
 - Veolia Suez

Introduction

- How to govern industrial policy and make it more competition-friendly?
 - Nunn-Trefler
 - Aghion et al
 - DARPA

DARPA

- In some areas (clean energy, défense), hard to move from fundamental research stage to implementation and commercialization.....
-due to coordination problems!
- ...*S-curve* dilemma: the basic technology exists but remains embryonary

DARPABLE projects

- Research can be organized around a mission
- Mid-way between lab and application (nascent S-curve)
- Frictions prevent financing and large-scale experimentation of the technology

Governance of DARPA

- Mixture of top down and bottom up
- Missions operated by autonomous program heads hiered for a 3 to 5 year period
- The heads can freely team up start-ups, university labs, and large industrial firms

DARPA in the US

- Annual budget of around 3 billion dollars spread over ~ 100 projects
- DARPA played a key role to help develop high risk/high fixed cost projects such as:
 - GPS
 - Internet
 - Navigation autonome
 - Laser
 - Personal computers
 - Energy transition

Example 1: COVID

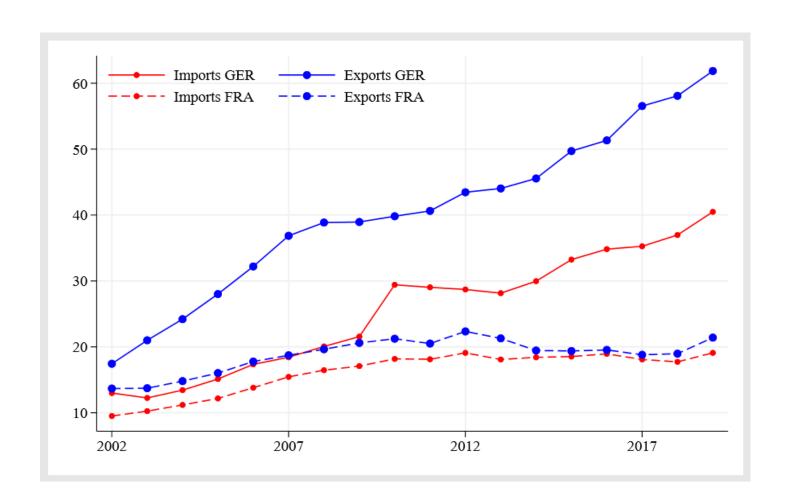
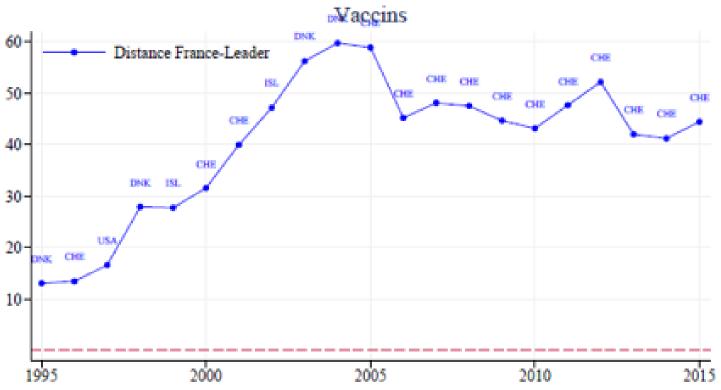


Table 1: Descriptive Statistics:

Country	Cum Cases	Cum Deaths	Cum Tests	Net exports	CTScans	CTScans	Curative	Pop over 60
**************************************	per $100k$	per 100k	per 100k	$(2019, \mathrm{euro/pop})$	(Total)	in Hosp	Beds	(%)
Austria	175.8	6.8	3460.9	84	2.86	1.75	544.7	29
Belgium	453.8	74	2337	128		2.30	500.45	28
Croatia	53	2.1	1077.2	21	1.79	1.33	350.5	32
Czechia	75.6	2.6	2788.8	-58	1.58	1.43	410.89	29
Denmark	181.6	9.1	5334.7	-45	3.97	3.95	253.62	29
France	270.8	40.3	1110	-35	1.74	1.23	309.01	29
Germany	204.5	9	3289.1	132	3.51	1.92	601.5	33
Greece	26	1.4	863.9		3.42	1.44	360.28	32
Hungary	33.3	4.2	1068.9	18	0.92		427.09	30
Italy	361	50.3	4158.4	-5.3	3.47	2.52	262.47	33
Lithuania	53	1.8	6625	72	2.33	1.84	547.2	30
Netherlands	248.5	31.8	1223.9	138	1.35	1.30	292.14	29
Poland	41.4	2.1	1217.2	-16	1.69	1.36	485.14	27
Portugal	268.8	11	5076.6	-36		2.38	324.72	32
Romania	78.7	4.9	1289.4	-29	1.40	0.78	525.33	29
Spain	478.2	56.6	4063.7	-45	1.86	1.64	242.61	28
Sweden	256.7	31.9	1470.4	48		1.85	203.6	29
UK	319	46.6	2546.1	-9.5			211.4	27



Note: Distance de la France au leader en terme de brevets triadiques par habitant.

Diagnosis/Surgery (A61B), Drugs for medical/dental purposes (A61K), sterilization (A61L)

Medical Devices (A61M) Radiation Therapy and others (A61N), Chemical Therapy (A61P)

Note: Distance de la France au leader en terme de brevets triadiques par habitant. A61K038 A61K039 A61K048 A61P031/16 A61P037 C12N015 C12N007 C12Q001/70 C12N005/10 C07K014/11 C07K014/005 C07H021 C07K019 G01N033/569

Table 1: Biotechnology patents by 1m inhabitants

	2010	2011	2012	2013	2014	2015	2016
US	10.37	10.56	10.84	12.25	11.74	12.71	12.77
EU27	5.12	5.19	5.02	4.87	5.13	5.02	4.67
OECD -							
Total	6.69	6.75	6.69	7.11	7.17	7.47	7.48
China	0.23	0.25	0.25	0.31	0.34	0.42	0.49

Source: Own calculations using OECD data. Reference country: Inventor's country of residence. Reference date: priority date.

Table 2: BARDA's COVID-19 Medical Countermeasure Portfolio

Type of Product	Total Award Amount (\$)	Total number of funded companies	Total number of funded products	
Vaccines	10,799,025,489	7	7	
Diagnostic	44,996,752	22	28	
Therapeutics	991,702,154	9	9	
Rapidly Deployable Capabilities	10,432,068	9	9	
Other	37,333,253	4	4	
Total	11,883,489,716			

Source: Our calculations based on

https://medicalcountermeasures.gov/app/barda/coronavirus/COVID19.aspx.

Table 4: Funding from the European Commission and the European Investment Bank

Funding Purpose	Amount (USD)				
European Commission					
R&D	1,081,600,000				
Preparedness and emergency response	217,107,249				
Unallocated	436,667,248				
Vaccine development	109,166,812				
Total EC	1,844,541,309				
European Investment Bank					
Manufacturing and delivery of therapeutics	63,316,751				
Manufacturing and delivery of vaccines	91,700,122				
Preparedness and emergency response	2,025,044,367				
Total EIC	2,180,061,240				

Source: Own calculations using data from The COVID-19 Health Funding Tracker, from The Economist.

Example 2: Climate

Climate

- Three main levers:
 - Carbon price
 - Industrial policy
 - Competition

	(1)	(2)	(3)
VARIABLES	log (1+ #clean) - log (1+ #dirty)	log (1+ #clean)	log (1+ #dirty)
	3 (" "),		
Values	0.148***	0.0387	-0.109***
	(0.0286)	(0.0243)	(0.0239)
Competition	0.173	0.431***	0.258**
	(0.171)	(0.147)	(0.132)
ValuesXCompetition	0.0316**	0.0284**	-0.00314
	(0.0145)	(0.0124)	(0.0118)
Log fuel price	0.597***	0.454***	-0.143
	(0.171)	(0.149)	(0.154)
Observations	17,124	17,124	17,124
R-squared	0.123	0.180	0.026
Number of firms	8,562	8,562	8,562

Conclusion

- Need both, competition policy and industrial policy for enhancing innovation based growth
- Competition policy needs to be adapted to IT and IA revolutions: more dynamic approach to competition policy
- Industrial policy is also needed, but has to be better governed and reconciled with competition