Revised draft validation report for the new Test Guideline describing the Hyalella azteca Bioconcentration Test (HYBIT)

For second WNT-review by 14 February 2024

onthe and a second

1	MULTI-LABORATORY RING-TRIAL TO SUPPORT DEVELOPMENT OF OECD TEST
2	GUIDELINE ON HYALELLA AZTECA BIOCONCENTRATION TEST (HYBIT)
3	
4	
5	Draft 15.12.2023
6	
7	
8	
9	
10	
11	

12 TABLE OF CONTENTS

13	INTRODUCTION	5
14	MATERIAL AND METHODS	7
15	Animal husbandry	7
16	Sexing of test animals	8
17	Test chemical selection	8
18	Chemicals and supplies	8
19	Ring trial bioconcentration experiments	8
20	Preparation of test media	9
21	Selection of test concentrations	10
22	Preparation of test food (Decotabs)	11
23	Test performance	11
24	Sampling of <i>H. azteca</i> and water	12
25	Sample analysis	13
26	Lipid determination	13
27	Lipid determination (pre-test)	14
28	Calculations	14
29	Validity criteria	16
30	RESULTS	17
31	Husbandry establishment	17
32	Lab participation and experimental setups	17
33	Experimental conditions	17
34	Weight and lipid content of <i>H. azteca</i>	18
35	Water concentrations	19
36	Hyalella azteca tissue concentrations & steady state conditions	19
37	Hyalella azteca tissue concentration development over time	20
38	Calculation of BCF _k	20
39	Lipid-normalized BCF _k values	21
40	Comparison of radiolabel and non-radiolabel exposure with Prochloraz	21
41	Comparison BCF _k /BCF _{ss}	22
42	CONCLUSION & DISCUSSION	23
43	REFERENCES	26
44	TABLES	29
45	FIGURES	31
46	ANNEX 2: PARTICIPATING LABORATORIES (IN FREE ORDER)	36

47	ANNEX 3: TOXICITY TEST WITH HYALELLA AZTECA AS PRELIMINARY	
48	EVALUATION FOR BIOCONCENTRATION TESTS	37
49	ANNEX 4: SAMPLING SCHEDULE	42
50	ANNEX 5: EXPERIMENTAL CONDITIONS	46
51 52	ANNEX 6: RESULTS OF THE BIOCONCENTRATION EXPERIMENTS CONDUCTED I THE HYBIT RING TEST.	N 49
53	ANNEX 7: PRELIMINARY LIPID CONTENT DETERMINATION: RESULTS	54
54 55	ANNEX 8: LIPID CONTENT OF HYALELLA AZTECA DETERMINED IN EACH HYBI BIOCONCENTRATION EXPERIMENT.	Г 55

58 **INTRODUCTION**

59

azteca under standardized conditions (HYBIT) was developed as part of project LRI ECO 40 60 funded by the European Chemical Industry Council (Kosfeld et al. 2020). This protocol 61 62 includes both a flow-through and a semi-static test design. To support the development of a new OECD test guideline, validation was required to confirm the transferability of the HYBIT 63 test protocol and to prove the reproducibility of the results obtained. For this purpose, an 64 international multilaboratory ring trial has been carried out involving 11 laboratories. 65 Participating labs could perform bioconcentration studies with H. azteca following the semi-66 static or flow-through design (or both) and were responsible for test performance as well as 67 analyses of chemicals in water and Hyalella samples collected during the bioconcentration 68 studies. Considering all sample replicates and the series of sampling times required to 69 estimate the kinetics of substance uptake and elimination, large test populations of up to 1500 70 organisms were required. Therefore, guidance on the laboratory husbandry of *H. azteca* was 71 72 provided.

A protocol for carrying out bioconcentration tests with the aquatic invertebrate species H.

Populations of adult amphipods consist of male and female animals. However, mixed test groups should be avoided to prevent the reproduction of the animals during BCF studies which would cause elimination of previously accumulated test item by the release of juvenile amphipods. To collect male or female amphipods as test organisms, adult *H. azteca* can be separated according to their specific sexual characteristics. Only male amphipods were used for the bioconcentration studies.

Three chemicals of different properties were tested as part of the ring trial. Test substances
were Terbutryn, Prochloraz and Hexachlorobenzene (HCB) which are characterized by low to
high hydrophobicity, respectively. Terbutryn and Prochloraz were tested in the semi-static
approach. Prochloraz and Hexachlorobenzene were tested in flow-through tests.

Kinetic and steady-state BCF estimates which are known to depend on the lipid content of the 83 84 test animals were calculated for all test substances (Schlechtriem et al. 2019, Kosfeld et al. 2020). The lipid content in *H. azteca* may vary depending on the size and age of the 85 amphipods and tends to be lower compared to the lipid levels measured in fish used for 86 bioaccumulation testing. Therefore, lipid normalization of the estimated BCF values is 87 required to explain interlaboratory differences in the results obtained during the ring trial and 88 89 to allow the comparison with BCF estimates from fish studies. Lipid normalization of BCF estimates to a lipid level of 3% (w/w) was carried out which is equivalent to a high lipid 90 content of male field caught amphipods (Arts et al. 1995). However, only the use of suitable 91 92 extraction techniques guarantees the complete extraction of total lipids from collected test organisms which is required to ensure the correct lipid normalization of BCF values 93 (Schlechtriem et al. 2012). Therefore, a standard protocol for lipid measurements of small size 94 95 samples is part of the ring test protocol. The correct application of the extraction procedure in the different labs was validated prior to the ring test. 96 97 The results of the multi-laboratory ring trial to support the development of a new OECD test guideline on the H. azteca bioconcentration test (HYBIT) are described including a 98

99 comparison of the BCF estimates obtained across the participating laboratories.

101 MATERIAL AND METHODS

Prior to the ring trial, the HYBIT protocol for *H. azteca* bioconcentration studies (Annex 9)
was applied in several studies with Prochloraz, Terbutryn and HCB at the test facilities of
UBA, Ineris, and Fraunhofer IME. Studies were carried out under semi-static (Terbutryn,
Prochloraz) and flow-through (Prochloraz, HCB) conditions. ¹⁴C radiolabeled Prochloraz was
applied to assess the suitability of the semi-static approach for radiolabeled studies. The pretests confirmed the robustness and transferability of the ring test protocol.

108 Animal husbandry

Test animals for the bioconcentration tests carried out as part of the ring trial were obtained by 109 110 laboratory breeding in the participating test facilities (Annex 2). Alternatively, test animals purchased from commercial sources could be used, provided that the animals have been 111 acclimatized appropriately. The procedure applied for the laboratory husbandry of *H. azteca* 112 was based on the protocol of Borgmann and Norwood (2009). During husbandry, the 113 amphipods were kept in culture medium in 2 L polypropylene beakers. The culture medium 114 115 was based on Borgmann (1996) containing essential mineral nutrients. H. azteca were fed with commercial fish flakes TetraMin[®], which has been ground to fine powder using a porcelain 116 mortar or similar. Feeding was carried out 3 times per week by adding 20-30 mg of the 117 TetraMin[®] powder to each of the beakers. In addition, every beaker contained an approximately 118 5 x 5 cm piece of gauze which served as place of refuge. Since the gauze was consumed by the 119 animals, the availability was checked weekly and the gauze replaced if needed. Each beaker 120 contained 15 male and 15 female *H. azteca each*, which were sieved weekly with two Artemia 121 sieves (900 µm and 180 µm) to separate the juvenile amphipods. Culture medium was replaced 122 123 on a weekly basis. Water temperature during *H. azteca* husbandry was $25 \pm 2^{\circ}$ C. No additional aeration was applied. Using wide-spectrum fluorescent lights (840 K) providing a illuminance 124 of 500 to 1000 lux, animals were kept under a 16h light: 8 h dark regime. 125

126 Sexing of test animals

Adult *H. azteca* were transferred into a petri dish, examined under a stereomicroscope 127 (magnification factor: 6-10x) and separated based on their specific sexual characteristics. 128 Generally, only male amphipods were selected. Test organisms which were used in the 129 bioconcentration studies were preferred to be older than 2 months. An Artemia sieve of wider 130 mesh size (900 μ m) was used to separate larger amphipods and to obtain test organisms of 131 132 similar size. The male amphipods were collected, counted, and transferred into beakers (2 L polypropylene) filled with a mix of culture medium and holding and dilution water (HDW) 133 (50:50) to allow gradual adaptation of the animals to the test water (HDW) until the start of 134 135 the test. The holding conditions (feeding, light, temperature) during this phase were in 136 agreement with the husbandry condition described above. The sexing took place 1-2 days before test start. 137

138 <u>Test chemical selection</u>

139 Three chemicals of different properties were tested in the ring trial. Test substances were 140 Terbutryn, Prochloraz and HCB. Table 1 presents the structure, CAS No. and measured $\log K_{ow}$ 141 value for each chemical. All substances were previously applied in *Hyalella azteca* 142 bioconcentration tests (Schlechtriem et al. 2019, Kosfeld et al. 2020).

143 Chemicals and supplies

Terbutryn (99.1% purity) was purchased from Sigma Aldrich (Cat. No. 45677). Prochloraz
(>98.6% purity) was obtained from Sigma Aldrich (Cat. No. 45631) as well as HCB (purity >
99%) (Cat. No. 45522).

147 <u>Ring trial bioconcentration experiments</u>

148 Eleven laboratories (see Annex 2) were involved in the ring trial, with varying degrees of

- 149 experience in performing bioconcentration tests, from no experience to having many years of
- 150 experience in test performance. During the ring trial there were two possible options to

conduct bioconcentration studies with *H. azteca*: using a semi-static test setup with a full daily 151 water exchange or a flow-through approach with an exchange rate of e.g. 5 times the total 152 volume per day. A detailed description of the different test set-ups is provided in Annex 9. 153 For both set-ups holding and dilution water (HDW) fulfilling the requirements defined by 154 155 OECD 305 (OECD, 2012a) was used to prepare the test media. However, apart from the simple use of HDW further media such as Borgmann medium, Elendt M4 medium, ISO 156 157 medium or reconstituted medium, were applied (Annex 5). An overview of the bioconcentration experiments conducted by the different participants as part of the ring trial is 158 presented in Table 2. 159

160 **Preparation of test media**

161 Terbutryn and Prochloraz (semi-static test setup). For the preparation of the basic solution, 750 µL of the acetonic stock solution containing 0.75 mg of test item were pipetted into a 10 162 L-brown glass bottle with screw cap. After evaporating the solvent to complete dryness, the 163 164 bottle was filled up to a total volume of 10 L with HDW (or alternative media) to reach a target concentration of 75 μ g/L. The basic solution was then stirred overnight (at least 14 h) 165 using a magnetic stirrer. 10 L of the basic solution were added to the aquarium (test chamber), 166 which was then filled with 5 L of HDW (or alternative media) to provide the exposure 167 concentration of 50 µg/L. Finally, the test medium (test solution) was stirred thoroughly to 168 169 guarantee homogeneous exposure conditions.

Prochloraz (flow-through test setup / solvent-free application). For the preparation of the
basic solution, 1 mL of the acetonic stock solution containing 10 mg of test item were pipetted
into a 10 L-brown glass bottle with screw cap. After evaporating the solvent to complete
dryness, the bottle was filled up to a total volume of 10 L with HDW (or alternative media) to
reach a target concentration of 1 mg/L. The basic solution was then stirred overnight (at least
14 h) using a magnetic stirrer. The daily prepared basic solution of the test item (10 L) was

constantly stirred and served as substance reservoir. The reservoir was connected with a
membrane pump via a glass capillary tube (PTFE tube fittings). The aqueous solution from
the reservoir was pumped at a defined flow rate (5 mL/min) into a mixing chamber with
magnetic stirring. Through a second inlet of the mixing chamber HDW (or the alternative
medium) was added to reach a defined total flow rate (100 mL/min). The test medium was
directed continuously into the experimental tank, which was thermo-regulated by an outer
water bath.

HCB (flow-through test setup / solvent-facilitated application). A stock solution of HCB was 183 prepared at a concentration of 1 mg/mL using Dimethylformamide (DMF) as solvent. In total, 184 185 20 mL of the stock solution were prepared and stored at \leq 8°C. 1 mL of the stock solution was 186 used to prepare an intermediate solution in DMF at a concentration of 10 µg/mL (1:100 dilution). The intermediate solution of HCB was filled into a 50 mL infusion pump syringe 187 (substance reservoir). After connecting the syringe to the infusion pump system, the 188 intermediate solution was pumped at a flow rate of approx. 10 µL/min into a mixing chamber 189 with magnetic stirring. Through a second inlet of the mixing chamber HDW (or an alternative 190 medium) was added to reach a defined total flow rate of approx. 100 mL/min and to provide 191 the exposure concentration of $1 \mu g/L$. 192

193 Selection of test concentrations

Toxic effects should be avoided in bioconcentration studies and it is thus important to select 194 195 exposure concentrations that do not cause adverse effects in the test species over the entire exposure period. However, sufficient information on the toxicity of the three test substances 196 197 in *H. azteca* were missing and therefore, appropriate exposure concentrations were determined prior to the performance of the bioconcentration tests (Schlechtriem et al. 2019, 198 Kosfeld et al. 2020). All test concentrations applied in the ring trial showed to have no effect 199 200 on the survival of the animals. Nevertheless, a toxicity test protocol to identify suitable test 201 concentrations was developed involving a semi-static exposure scenario (Annex 3). The

protocol was evaluated prior to the ring-test by three of the participating laboratories using the 202 203 test substance Prochloraz. The preliminary toxicity tests confirmed that the exposure concentration of 0.05 mg/L that was previously used in Kosfeld et al. (2020) is safe and can 204 be used in the ring test. First toxic effects could be seen only in media concentrations of > 1205 206 mg/L Prochloraz after an exposure time of 96 hrs. For highly hydrophobic substances such as HCB (log K_{ow} 5.86) the semi-static exposure scenario may be inappropriate due to high 207 208 potential losses caused by adsorption. In this case the preliminary toxicity test can still provide important information on the further testing of the test substance recommending a 209 flow-through application. 210

211 <u>Preparation of test food (Decotabs)</u>

212 Due to the good growth performance in *H. azteca* fed agar-bound flakes (Decotabs) enriched with ground fish food flakes (TetraMin[®]), Decotab-feeding was the preferred feeding method 213 for the ring test (Kosfeld et al. 2020). Decotabs were prepared according to Kampfraath et al. 214 215 (2012). In brief, an appropriate volume of a 2% agar solution was boiled in a microwave until the agar has dissolved completely. After a short cool-down phase TetraMin[®] was added to the 216 solution equivalent to 75 mg ground TetraMin[®] per mL. The suspension was stirred and 217 poured into the wells of the silicone tray. The agar cubes solidified rapidly. The silicone tray 218 was then sealed with a plastic bag to avoid evaporation and stored at 4°C and were used 219 within 7 days. 220

221 <u>Test performance</u>

The HYBIT protocol (Annex 9) includes a semi-static and flow-through test design which largely follow the concept of the aqueous exposure fish test described in OECD TG 305-I (OECD 2012a). As in the fish test, aqueous bioconcentration studies with *H. azteca* are conducted to assess the bioaccumulation potential of chemicals measured by the chemical's bioconcentration factor (BCF). *H. azteca* are exposed to the chemical dissolved in water. *H.*

azteca and water samples are collected and analyzed at certain intervals during the course of 227 228 the test to ultimately determine uptake and depuration rate constants or bioconcentration factors. The BCF is calculated as the ratio of the concentration in the amphipod to the 229 dissolved concentration in water at "steady-state" (BCF_{SS}), or by the ratio of the uptake and 230 231 depuration rate constants (BCF_K). An overview over the participating labs and their conducted bioconcentration experiments during the ring test are presented in Table 2. The experimental 232 233 conditions (temperature, pH, dissolved oxygen) were monitored throughout the 234 bioconcentration tests.

235 Sampling of *H. azteca* and water

Sampling of *H. azteca* and test medium was carried out according to the schedules presented 236 237 in Annex 4. The amphipods were removed from the test vessel via a small net. The required number of organisms were transferred with a spring steel tweezer into 50 ml glass beakers 238 filled with water from the test vessels. Each beaker represented one replicate. The remaining 239 240 organisms were returned into the test chamber. Each replicate was placed in a fine sieve and rinsed in dilution water (approx. 50 ml). After shortly blotted drying with soft paper, the 241 organisms of one replicate were transferred in tared 1.5 ml reaction vials, weighed and 242 immediately frozen at \leq -18°C. Water samples (10 mL) were sampled in duplicates from the 243 test vessels using a 10 mL pipette (after carefully stirring the water in the test vessels) and 244 instantly added to a glass vial (e.g. 20 mL) containing 2 mL methanol. Importantly, during 245 studies following the semi-static test setup water samples were taken from both, the aged and 246 fresh medium (prior to and after media exchange, respectively). After vigorously mixing, the 247 248 medium samples were transferred to the analytical laboratory for further sample preparation and analysis on the same day or were immediately stored at $\leq -18^{\circ}$ C. For hexachlorobenzene 249 250 (flow-through setup) water samples (2 x 50 mL) were siphoned from the test vessels (for 251 example using a glass beaker) from a central point in the test chamber and 50 g (weighing on an appropriate balance) poured into a 60 mL glass vial (with a screw cap). The two samples 252

were instantly transferred to the analytical laboratory for further processing and analysis on the same day or immediately frozen at $\leq -18^{\circ}$ C.

255 Sample analysis

Water and tissue samples containing Terbutry and Prochloraz were analyzed using LCMS/MS for quantification. Hexachlorbenzene was analysed using GC-MS (in SIM mode).
Water samples containing ¹⁴C radiolabelled Prochloraz were analyzed for [¹⁴C] content by
liquid scintillation counting (LSC). Details pertaining to methods, and instrumentation, are
provided in the HYBIT protocol (Annex 9).

261 Lipid determination

For determination of the lipid content of the test organisms, the lipid extraction method of 262 Smedes (1999) adapted by Schlechtriem et al. (2012) was used. Small glass vials (7 mL) were 263 stored over night at 75 °C in a drying cabinet, placed in a desiccator for additional 30 min and 264 weighted (empty). They were used to pool the lipid extract. The amphipods were transferred 265 into glass test tubes (at least 10 mL). After 200 µl of solution 1 (Cyclohexane / Isopropanol 266 5:4 (v/v)) were added to the tube, and the amphipods were homogenized for about 1 min with 267 a homogenizer with Teflon pestle. The pestle was rinsed with 4.3 ml Solution 1, which were 268 also collected in the tube. After that 2.75 ml of distilled water were added, the tube was 269 270 vortexed and centrifuged (12 min, 1650 rpm). The organic phase was transferred into the small glass vial using a Pasteur pipette. After that 2.5 ml of solution 2 (Cyclohexane / 271 272 Isopropanol 87:13 (v/v)) were added to the remaining aqueous phase, the tube was vortexed again and centrifuged under the same conditions. The organic phase was pooled with the first 273 one and evaporated with nitrogen until only the lipid phase was left. The extract in the glass 274 vial was stored over night at 75 °C in a drying cabinet, placed in a desiccator for additional 30 275 276 min and weighted again. The net dry weight was determined with a microbalance (accuracy 0.001 mg) for a total lipid content by weight. 277

278 <u>Lipid determination (pre-test)</u>

Eight of the eleven ring test participants joined a preliminary test to validate the performance
of the lipid content determination. In case of the remaining three labs, the appropriate lab
equipment was not available to carry out the analysis. Hyalella samples were provided by
Fraunhofer IME having a known lipid content (benchmark). Samples were analysed by all
labs using the extraction protocol described before.

284 <u>Calculations</u>

285 The bioconcentration factor (BCF) was determined based on the measured test item

concentrations in water samples collected during the uptake phase and *H. azteca* collected

during the uptake phase as well as during the depuration phase of the study. The methods used

for BCF determination were largely based on the methods described for fish in Annex 5 of the

OECD test guideline 305 (OECD 2012a). In contrast to the BCF determination in fish, growth

290 can be neglected in *H. azteca* BCF calculation due to the use of adult amphipods as shown in

this study.

292 Determination of tissue concentration at steady state

The *H. azteca* tissue concentration at the very end of the uptake phase was compared to the determined concentrations at the sampling times before. A steady state tissue concentration was calculated as a mean concentration of those individual values that are in a \pm 20% range.

296 TWA calculations (semi-static and flow-through exposure)

297 The calculation method of the time-weighted average water concentration was chosen

depending on the exposure method. For semi-static exposure experiments, the calculation

- method described in Annex 6 of the OECD TG 211 was applied (OECD 2012b). For the
- 300 evaluation of flow-through exposure experiments, concentrations were multiplied with a
- 301 weighing factor that represents the time span that this concentration was measured at. Finally,

302 the sum of all weighed concentrations was divided by the sum of the total exposure duration 303 (Schlechtriem et al. 2019).

BCF_{ss} calculation 304

312

313

Steady state BCFs were calculated as the quotient of the H. azteca tissue concentration at 305 306 steady state and the TWA of the test medium applied during the uptake phase.

BCF_k calculation – simultaneous (via bcmfR) and sequential determination 307

308 The kinetic BCF was calculated using the bcmfR package for R in the version 04.18 provided

by Tom Aldenberg. This package was proposed as standardized method to evaluate 309

bioconcentration studies in the Guidance Document for the OECD TG 305. In past studies, it 310

311 was shown that this tool can also be used for bioconcentration studies with H. azteca (Kosfeld

ring test results. The underlying model the concentration data was fitted to is the following:

et al. 2020) and accordingly it was decided to use the tool for a standardized evaluation of the

314
$$C_{H.azteca}(t) = TWA * \frac{k_1}{k_2} (1 - e^{(-k_2 * t)})$$
 [Equation 1]

In some cases the R calculation can fail, for example in cases when too many tissue 315 concentration data points were below the analytical detection limit and cannot be considered 316 for the calculation. In such cases, a manual calculation approach was performed. In contrast to 317 318 the bcmfR package, which utilizes a sequential determination of the uptake and depuration constants k_1 and k_2 , the manual approach is a sequential one that first calculates the 319 320 depuration rate k_2 from the depuration data and then calculates the uptake rate from the uptake 321 data, TWA and k_2 value. The depuration data was then fitted to a first order exponential decay model: 322

323
$$C_{H.azteca}(t) = a * e^{(-k_2 * t)}$$
 [Equation 2]

To derive the uptake rate k_1 , the previously obtained k_2 value was inserted into equation 1 and 324 325 the uptake concentration data was fitted to the equation.

326 Matlab 2018b was used to fit the data based on the sequential method.

327 In the past studies it was seen that the BCF_k values determined with the above described

sequential method are well comparable with the BCF_k values determined in the untransformed

- 329 fit with the bcmfR modeling approach. Accordingly, the untransformed fit of the bcmfR
- evaluations was used for all comparisons.

331 Lipid normalization

- Both bioconcentration factors (BCF_{ss} and BCF_k) were lipid normalized to a tissue lipid
- content of 5%. For this the BCF was divided by the determined total lipid content and then
- multiplied with 5.

335 Error propagation

- All BCF values were furthermore evaluated for their uncertainties. For this, the general law of
- error propagation without consideration of covariance was applied as described in
- 338 Schlechtriem et al. 2019. Differences to the mentioned paper lie in the source of the errors for
- the k_1 and k_2 values which were derived from the bcmfR fitting results, or from the Matlab fit
- in case of a sequential fit.

341 Validity criteria

- 342 For a test during the ring-trial to be valid the following conditions were applied:
- The water temperature variation is less than $\pm 2^{\circ}$ C, because large deviations can affect

344 biological parameters relevant for uptake and depuration

- The concentration of dissolved oxygen does not fall below 60% saturation;
- The concentration of the test substance in the chambers is maintained within $\pm 20\%$ of
- 347 the mean of the measured values during the uptake phase;
- The concentration of the test substance is below its limit of solubility in water, taking
- into account the effect that the test water / medium may have on effective solubility;
- The mortality or other adverse effects/disease in treated *H. azteca* is less than 20% at the end of the test.

352 <u>RESULTS</u>

353 Husbandry establishment

Prior to the ring test experiments, a husbandry for *H. azteca* was established to ensure
sufficient supply of animals throughout the test period in four labs. In six labs, an established
husbandry was already present; one lab was supplied with "on-demand" *H. azteca* from the
Fraunhofer IME facility.

The HYBIT protocol provided all details to establish the *H. azteca* husbandry including details on the proper selection of husbandry vessels, aeration, and feeding. All four labs were able to establish a husbandry that was able to produce enough offspring for bioconcentration tests. Two labs received additional *H. azteca* for their test starts. One lab had to postpone their husbandry establishment due to the COVID-19 pandemic and did not have enough amphipods for two tests in a short time frame. In another case, the lab had to repeat some experiments and needed additional supply with amphipods.

365 Lab participation and experimental setups

Eleven different labs participated in the main part of the experimental phase. Most labs 366 367 conducted two different bioconcentration experiments, individual labs performed a single one, and other labs contributed three different experiments (Table 2). In total, 24 different 368 experiments were provided for three different substances, whereas one substance (Prochloraz) 369 was also tested as radiolabeled compound in two of these 24 experiments. Two different test 370 set-ups were used. The potential effects of the different methods could be evaluated in case of 371 372 the substance Prochloraz, which was tested regularly with both, the semi-static and the flowthrough application. 373

374 **Experimental conditions**

375 Experimental conditions were monitored throughout the studies. The results of the

376 measurements (temperature, pH, dissolved oxygen) presented in Annex 5 confirmed the

suitability of the test protocol to maintain acceptable conditions for the amphipods during the 377 378 BCF studies. In several studies the concentration of dissolved oxygen dropped temporarily below 60%. However, this had obviously no effect on the condition of the invertebrates and a 379 reduction of the minimum acceptable concentration of dissolved oxygen (validity criterion) 380 381 from 60 to 50% should be thus considered. For individual studies, total organic carbon contents were recorded in the test vessels but never exceeded the threshold value of 10 mg/L. 382 383 Mortality was generally below 20% in the different studies which was compensated by the addition of extra amphipods (additional 20%) at the start of the test. Only in three cases the 384 number of amphipods was not sufficient for complete sampling. 385

386 Weight and lipid content of *H. azteca*

The average weight of the amphipods used for the bioconcentration tests and their lipid 387 contents were determined. As shown in Figure 1, the size of the invertebrates was very 388 different leading to large range of sample wet weight from around 20 to 100 mg. Data from 389 all sampling events (start and end of uptake phase and end of depuration phase) were 390 391 considered in the mean calculations. The lipid content of the amphipods was determined at three different times in all experiments (Annex 8). The mean lipid content of $2.2 \pm 0.15\%$ 392 determined in the preliminary phase of the ring test served as orientation for the interpretation 393 of the lipid data from the main tests. Lipid values were considered realistic and valid if the 394 following aspects were met: 1) Mean lipid value < 5% 2) Relative SD < 30% 3) At least two 395 replicates per sampling time could be evaluated and the lipid content determined. 396

In five out of the 24 experiments conducted no reliable or realistic lipid contents could be evaluated. Since these three labs received their *H. azteca* from the Fraunhofer IME lab, it was decided to assume a mean lipid value of $2.2 \pm 0.5\%$ equivalent to the benchmarking samples analysed during the lipid-determination pre-test. Mean lipid contents calculated throughout 401 the different experiments (all experiments) ranged from $1.4 \pm 0.21\%$ to $3.8 \pm 0.60\%$ as listed 402 in Annex 8.

403 Water concentrations

Water concentrations were measured during the uptake phase of the bioconcentrationexperiments and ideally also at the onset of the depuration phase to ensure no substance was

406 carried over. Time-weighted averages (TWA) for each exposure were calculated and

407 furthermore, it was checked whether this TWA was in a \pm 20 % range. Figure 3 summarizes

408 the calculated TWAs for each experiment. If this range was crossed by any individual water

409 concentration measurement, the respective concentration and the time when it was determined

410 were listed (Annex 6). In only four out of 24 studies the \pm 20% TWA concentration range was

411 missed. In most cases, the \pm 20% TWA concentration range was crossed at the start of the

412 experiment at t = 0. The results show, that the HYBIT test system allows the application of

413 constant water concentrations during the uptake phase.

414 *Hyalella azteca* tissue concentrations & steady state conditions

415 Ideally, the uptake phase should be long enough to assure that the amphipods reach a steady state situation with their environmental conditions. In the OECD TG 305 for bioconcentration 416 experiments with fish a steady state is defined as follows: "A steady-state is reached in the 417 plot of test substance in fish (C_f) against time when the curve becomes parallel to the time 418 axis and three successive analyses of $C_{\rm f}$ made on samples taken at intervals of at least two 419 days are within $\pm 20\%$ of each other, and there are no significant increases among the three 420 sampling periods." For the following evaluation, steady-state concentrations were calculated 421 from the tissue concentration at the end of the uptake phase and the preceding tissue 422 423 concentrations that fall within a \pm 20% range of the tissue concentration at the end of the uptake phase (OECD 2012a). The amphipod concentrations at steady state are summarized in 424 Figure 3. Furthermore, the duration to reach steady state conditions in the different studies are 425

presented in Annex 6 showing clear differences between some of the tests. BCF_{ss} calculated
from the steady-state tissue concentrations and the corresponding TWAs are listed in Annex
6.

429 *Hyalella azteca* tissue concentration development over time

The development of the tissue concentrations in the amphipods over time for the test
compounds is presented in Figure 2. The plots underline the observations in regard to the
steady-state durations described in Annex 6. The related uptake (k₁) and depuration (k₂) rates
are presented in Figure 3.

434 Calculation of BCFk

Annex 6 lists all parameters that were calculated for the different experiments using the 435 bcmfR package for R. BCF_k values calculated from the uptake and depuration rates are 436 presented in Figure 4 for the non-radiolabeled test compounds and range from 20-62 for 437 Terbutryn, from 128 – 292 for Prochloraz, and 18544 to 32064 for HCB. Of the seven 438 Terbutryn experiments that were conducted, only six could be evaluated via the bcmfR 439 package for R. The long depuration experiment of lab 01 could not be evaluated by the R 440 package, hence the kinetic parameters k_1 and k_2 (listed in Annex 6) were determined manually 441 via the sequential approach in accordance with the description in Annex 5 of the OECD TG 442 305. 443

For Prochloraz, which was tested in 10 BCF studies under semi-static and flow-through
conditions, no difference between the mean of the BCF values obtained during the six semistatic and the four flow-through studies could be detected (Figure 4).

In total, five different bioconcentration experiments with HCB were conducted. In one lab, a
set of juvenile amphipods was additionally exposed to the test substance. The plots indicate
that steady state was not reached in the HCB experiments. This impression is underlined by
the comparison of the respective BCF_{SS} and BCF_k values (c.f. Annex 6). The BCF_{SS} values

- 451 are consistently lower than the corresponding BCF_k values, which according to the OECD TG
 452 305 is an indication that steady-state has not been reached in the experiment.
- 453 The inter-laboratory variability (coefficient of variation) in the resulting BCF_{kL} was 34.4 %,
- 454 30.9 % and 28.1 % for all studies performed on Prochloraz, Terbutryn and HCB, respectively.

455 Lipid-normalized BCF_k values

456 As advised in Schlechtriem et al. 2019 a normalization of BCF values to 5% total lipid content should be performed. However, the performance of the lipid determination itself may 457 need some practice which is why a preliminary lipid determination ring trial had been 458 459 initiated (c.f. Annex 7). While for five studies of the main ring trial later an empirically determined lipid content value for the normalization procedure was required due to strongly 460 deviating fat contents, for the remaining 19 BCF experiments lipid values were available that 461 could be utilized. The lipid normalized BCF_k values are presented in Figure 4. Lipid 462 normalization was leading to increased BCFk values. The uncertainties of Hyalella BCF 463 values were calculated by the general law of propagation. 464

465 Comparison of radiolabel and non-radiolabel exposure with Prochloraz

The plots in Figure 2 visualize the differences in the uptake of Prochloraz in the radiolabeled 466 467 experiments compared to the non-labeled ones. The plots for the radiolabel experiments at the bottom of the figure indicate that no steady state was reached when the uptake of total 468 radioactivity, which also includes biotransformation products, was evaluated. However, in a 469 semi-static approach with radiolabeled Prochloraz in addition to the analysis for total 470 radioactivity in the amphipods' tissue, an additional analysis for the parent substance 471 472 prochloraz was performed. The determined BCFk and BCFkL values of the analysis for the parent substance agree with the mean BCF values calculated from the data in the main test 473 (non-radiolabeled compound) which is graphically displayed in Figure 5. 474

475 Comparison BCF_k/BCF_{ss}

476 A comparison of BCF_{SS} and BCF_k values can give insight into the quality of the results according to paragraph 79 of the OECD TG 305. In all experiments with Prochloraz similar 477 values were calculated for the BCF_{SS} and BCF_k values which indicates that steady-state was 478 reached in the experiments despite differing times until steady-state were observed. The 479 Terbutryn BCF values show a similar picture to the Prochloraz ones. An exception was a BCF 480 481 value which was calculated based on an experiment with an extended depuration phase (119 hrs). For the respective dataset a fitting via the bcmfR package was not possible, 482 accordingly a manual fit with the sequential method was performed. In this case, the resulting 483 484 BCF_k is lower than the corresponding BCF_{SS} , which indicates a non-ideal fit. In all HCB experiments the calculated BCF_{ss} values are visibly lower than the corresponding BCF_k 485 values. This underlines that steady state obviously has not been reached which is also 486 487 supported by the respective concentration plots in Figure 2.

489 CONCLUSION & DISCUSSION

The present ring trial builds on previous efforts (Schlechtriem et al. 2019; Kosfeld et al. 2020) to evaluate the reliability of the *Hyalella azteca* Bioconcentration Test
 (HYBIT) which allows to derive bioconcentration factors (BCF) using an invertebrate species.

The present ring trial was accompanied by a large number of participating laboratories 494 (11 labs) which could choose between two experimental set-ups. In addition to the 495 common flow-through test design, a semi-static approach was applied. All laboratories 496 were successful in establishing the test system with manageable effort. The HYBIT 497 protocol was shown to be sufficiently robust to allow comparable performance even in 498 laboratories that have no experience with either H. azteca or bioconcentration tests. 499 Chemical analyses of the three test chemicals in water and *H. azteca* samples collected 500 during the studies were mostly performed by the participating labs to allow a reliable 501 assessment of user-associated sources of variability. 502 Bioaccumulation is key to the regulation of chemicals in several jurisdictions. The ring 503 test results demonstrate that comparable BCFs can be calculated from HYBIT 504 experiment data which would have a consistent assessment impact e.g. under REACH. 505 506 The lipid determination is a crucial part of the experiment. Therefore, care should be taken that the applied protocol delivers realistic values. The combined results of the 507 preliminary lipid determination test and the main test show that a gravimetric lipid 508 determination according to a downscaled Smedes (1999) protocol is feasible and 509 replicable for *H. azteca* as part of bioconcentration tests with appropriate preparation. 510 511 Alternative lipid determination protocols (e.g. colorimetric ones) may also be

applicable, however the Smedes protocol is the one used for the OECD 305 studies in

513 fish and may therefore deliver the most comparable data. Generally, the use of suitable

equipment (scale with sufficient sensitivity), adequate training of the laboratory staff,

and the collection of a sufficient amount (mass) of *H. azteca* sampled per replicate areessential to obtain realistic results.

Proper performance of bioconcentration studies requires knowledge of the toxicity of
 the test substances in order to derive appropriate test concentrations. Generally,
 information on the toxicity of chemicals to *H. azteca* are often missing. Therefore, an
 acute toxicity test design was developed which can help in the setting of suitable
 experimental conditions.

For a test to be valid a set of criteria was defined including water temperature 522 variation, concentration of dissolved oxygen, concentration of the test substance in the 523 test chambers during the uptake phase, and the mortality of test animals during the 524 study. The ring trial has shown that experimental conditions (temperature, dissolved 525 oxygen) can be kept stable without much effort. In a few cases (four studies) 526 concentration of the test substance in the chambers could not be maintained within \pm 527 528 20% of the mean of the measured values (TWA) throughout the uptake phase. However, most of the concentrations that crossed the TWA range did so only for a 529 single time and in a slight way and the results of the studies do not show any sort of 530 531 divergence in comparison to the other studies. Mortality is another factor that should be monitored. Ideally, the mortality should not rise above a value of 20% in a 532 bioconcentration test, as mortality indicates a poor health condition of the amphipods, 533 which then again leads to unrepresentative physiological responses that alter the 534 uptake and depuration kinetics. Mortality was generally below 20% in the different 535 536 studies which was compensated by the addition of extra amphipods (additional 20%) at the start of the test. Only in three cases the number of amphipods was not sufficient 537 for complete sampling. 538

• Overall, these study findings suggest that the *Hyalella azteca* Bioconcentration Test (HYBIT) is reliable. The test can be carried out with confidence to generate data

541		which may be used for the regulatory bioaccumulation assessment of chemicals.
542		During the ring trial only lipid accumulating chemicals were tested. Additional work
543		with chemical substrates representing a wider range of structures are required.
544		Bioconcentration studies with ionizable compounds and nanomaterials were carried
545		out as part of a UBA funded project (Schlechtriem et al. 2022, Kuehr et al. 2020).
546	•	Hyalella BCF studies can be carried out with radiolabeled test compounds. However,
547		if radiolabelled substances are used, separation procedures such as thin-layer
548		chromatography (TLC) should be applied instead of TRR methods such as combustion
549		or LSC to allow calculation of BCF values which are directly comparable to a BCF
550		derived by specific chemical analysis of the parent substance (Raths et al. 2020).
551	•	When a laboratory has no previous experience with the test or experimental conditions
552		have been changed the use of reference substances of known bioconcentration
553		potential such as the test chemicals applied in the ring trial would be useful in
554		checking the experimental procedure.
555	•	In order that HYBIT as alternative test methods can be used systematically for
556		assessing the bioaccumulation potential of chemicals, an Integrated Test Strategy
557		(ITS) is required considering the opportunities and limitations of the new test system.

<u>REFERENCES</u>

559	Arts MT, Ferguson ME, Glozier NE, Robarts RD, Donald DB (1995), Spatial and temporal
560	variability in lipid dynamics of common amphipods: assessing the potential for uptake
561	of lipophilic contaminants. Ecotoxicology 4(2):91-113.
562	Borgmann, U. (1996): Systematic analysis of aqueous ion requirements of <i>H. azteca</i> . A
563	standard artificial medium including the essential bromide ion, Archives of environ-
564	mental contamination and toxicology 30 (3), S. 356–363.
565	Borgmann, U. and Norwood, W. P. (2009): Culture procedures for <i>H. azteca</i> . Environment
566	Canada.
567	European Commission (2009). Regulation (EC) no 1107/2009 of the European Parliament
568	and of the Council of 21 October 2009 concerning the placing of plant protection
569	products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC.
570	European Commission (2011). Regulation (EU) no 253/2011 of 15 March 2011 amending
571	Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the
572	Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) as
573	regards Annex XIII; 2011
574	European Commission (2012). Regulation (EU) No 528/2012 of the European Parliament and
575	of the Council of 22 May 2012 concerning the making available on the market and use
576	of biocidal products
577	Environment Canada (2013) Biological test method - test for survival and growth in sediment
578	and water using the freshwater amphipod Hyalella azteca
579	Kampfraath AA, Hunting ER, Mulder C, et al (2012) DECOTAB: a multipurpose standard
580	substrate to assess effects of litter quality on microbial decomposition and invertebrate
581	consumption. Freshw Sci 31:1156–1162. https://doi.org/10.1899/12-075.1

582	Kosfeld V, Fu Q, Ebersbach I, et al (2020) Comparison of Alternative Methods for
583	Bioaccumulation Assessment: Scope and Limitations of In Vitro Depletion Assays with
584	Rainbow Trout and Bioconcentration Tests in the Freshwater Amphipod Hyalella
585	azteca. Environ Toxicol Chem 39:1813–1825. https://doi.org/10.1002/etc.4791
586	Kühr, S., Kaegi, R., Maletzki, D., and Schlechtriem, C., 2020. Testing the bioaccumulation
587	potential of manufactured nanomaterials in the freshwater amphipod Hyalella azteca.
588	Chemosphere 263:127961. doi: 10.1016/j.chemosphere.2020.127961.
589	Mehlman DMA, Pfitzer DEA, Scala DRA (1989) A report on methods to reduce, refine and
590	replace animal testing in industrial toxicology laboratories. Cell Biol Toxicol 5:349-358
591	Nichols, J., Fay, K., Bernhard, M.J., Bischof, I., Davis, J., Halder, M., Hu, J., Johanning, K.,
592	Laue, H., Nabb, D., Schlechtriem, C., Segner, H., Swintek, J., Weeks, J., Embry, M.
593	(2018). Reliability of In Vitro Methods used to Measure Intrinsic Clearance of
594	Hydrophobic Organic Chemicals by Fish: Results of an International Ring Trial
595	Toxicological Sciences Volume 164, Issue 2, 1 August 2018, Pages 563–575
596	OECD (2012a) Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure.
597	OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing, Paris,
598	https://doi.org/10.1787/9789264185296-en.
599	OECD (2012b) Test No. 211: Daphnia magna Reproduction Test. OECD Guidelines for the
600	Testing of Chemicals. Paris, France.
601	OECD. (2018a). Test No.319A: Determination of in vitro intrinsic clearance using
602	cryopreserved rainbow trout hepatocytes (RT-HEP). OECD Guidelines for the Testing
603	of Chemicals. Paris, France.
604	OECD (2018b). Test No. 319B: Determination of in vitro intrinsic clearance using rainbow
605	trout liver S9 sub-cellular fraction (RT-S9). OECD Guidelines for the Testing of Chemicals.

606 Paris, France.

- 607 Raths, J, Kühr, S, Schlechtriem, C, 2020. Bioconcentration, metabolism and spatial
- 608 distribution of 14C-labelled laurate in the freshwater amphipod *Hyalella azteca*.
- 609 Environmental Toxicology and Chemistry, 2020; 39: 310–322.
- 610 Schlechtriem, C., Fliedner, A., and Schäfers, C. (2012). Determination of lipid content in fish
- samples from bioaccumulation studies: Contributions to the revision of guideline OECD
- 612 305. Environmental Sciences Europe. 24: 13.
- 613 Schlechtriem C, Kampe S, Bruckert HJ, et al (2019) Bioconcentration studies with the
- freshwater amphipod *Hyalella azteca*: are the results predictive of bioconcentration in
- 615 fish? Environ Sci Pollut Res. <u>https://doi.org/10.1007/s11356-018-3677-4</u>
- 616 Schlechtriem C, Kuehr S, Mörtl C. 2022. Development of a bioaccumulation test with the
- 617 freshwater amphipod *Hyalella Azteca*. Umweltbundesamt (FKZ 3718 67 401 0)
- 618 Smedes F (1999) Determination of total lipid using non-chlorinated solvents. Analyst

619 124:1711–1718. https://doi.org/10.1039/a905904k

- 620 United States Environmental Protection Agency (USEPA) (2000) Methods for Measuring the
- 621
 Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater
- 622 Invertebrates. Environ Prot 192
- 623 United States Environmental Protection Agency (USEPA) (2016) OCSPP 850.1735: Spiked

624 Whole Sediment 10-Day Toxicity Test, Freshwater Invertebrates

625

TABLES 627

629

Table 1: Details of the test substances used in the HYBIT ring test. 628

Substance	CAS No.	Molecular	Molecular	Solubility in water	Log Kow	<i>H. azteca</i> BCF in the literature
name		formula	weight (g/mol)			(as BCF _{KL})
Terbutryn	886-50-0	H ₂ C H ₃ N N H ₃ C H ₁ N H ₁ CH ₃	241.36	22 - 58 mg/L (at 20°C) ¹	3.48 - 3.74	76 – 78 [Kosfeld et al. 2020]
Prochloraz	67747-09-5	0 N	376.67	23.6 - 42.9 mg/L	3.53 - 4.39 (at pH	299 – 308 [Kosfeld et al. 2020]
		CI CI CI		(at pH 6 - 9 & 20 - 25°C) ²	6 - 9 & 20 - 25°C)	
НСВ	118-74-1		284.76	5 - 6 μg/L (at 25 - 26 °C) ³	5.37 - 5.73	25,704 [Schlechtriem et al. 2019]
		OV				

 ¹ Terbutryn EQS dossier (2011)
 ² Registration Report Mirage 45 EC (BVL, 2011)
 ³ EQS Substance Data Sheet for Hexachlorobenzene

Lab number	Test 1		Test 2		Test 3	~
	Substance	Exposure	Substance	Exposure	Substance	Exposure
01	Prochloraz	semi-static	Terbutryn	semi-static (long	Terbutryn	semi-static (long depuration phase)
				uptake phase)		
02	Prochloraz	semi-static	Terbutryn	semi-static		
03	Prochloraz	semi-static	Terbutryn	semi-static		
04	Prochloraz	semi-static	Terbutryn	semi-static		
05	Prochloraz	semi-static	Terbutryn	semi-static		
06	Prochloraz	semi-static	Terbutryn	semi-static	Prochloraz (¹⁴ C)	semi-static
07	Prochloraz (¹⁴ C)	Flow-through				
08	Prochloraz	Flow-through	НСВ	Flow-through		
09	Prochloraz	Flow-through	НСВ	Flow-through		
10	Prochloraz	Flow-through	НСВ	Flow-through		
11	Prochloraz	Flow-through	HCB (adult H.a.)	Flow-through	HCB (juvenile H.a.)	Flow-through

630 Table 2: Overview over participating labs and their conducted bioconcentration experiments for the ring test, respectively.

633 **FIGURES**

Figure 1: Average weight of amphipods used for the bioconcentration tests and their lipid contents. Comparison of mean tissue wet weight and determined mean lipid content. Error bars show the standard deviation (n=3). Note that with decreasing sample mass (< 50

- mg/sample) increased standard deviations for lipid measurements were observed in severalcases.
- 640

Figure 2: Concentration profiles over time for all experiments conducted in the HYBIT ring
test. Numbers in circles displayed next to each plot refer to the lab that conducted the study.
The x-axis displays the time in hours, the y-axis the concentration of the respective test

646 substance in *H. azteca* in mg/kg.

Figure 3: Results of the bioconcentrations experiments conducted in the HYBIT ring test. [left Y-axes: Terbutryn semi-static (n=7), Prochloraz semi-static (n=6), Prochloraz flowthrough (n=4); ¹⁴C Prochloraz (n=2); right Y-axes: HCB flow-through (n=5)]. Uptake rates k_1 (A), depuration rates k_2 (B), TWA, time-weighted average water concentrations (C) and tissue concentrations (D) measured under steady-state conditions are presented with standard deviations, respectively.

<

Figure 4: Comparison plots for all BCF_K (white bars) and BCF_{KL} (black bars) values determined in the HYBIT ring test. Grey bars display the standard deviation of the mean of all BCF_{KL} values, the error bars of individual BCF_K and BCF_{KL} values display the BCF error calculated by the general law of propagation. Mean BCF values with standard deviation are presented.

661 ANNEX 1: ABBREVIATIONS

- ^{14}C Carbon-14 radiolabeled
- 663 bcmfR Name of the R toolkit for BCF calculation
- 664 BCF Bioconcentration factor
- BCF_{K} Kinetic bioconcentration factor
- 666 BCF_{KL} Kinetic bioconcentration factor, lipid normalized
- 667 BCF_{SS} Steady-state bioconcentration factor
- 668 BCF_{SSL} Steady-state bioconcentration factor, lipid normalized
- C_{H-} Concentration measured in Hyalella
- C_{W} Concentration measured in water (test medium)
- 671 HCB Hexachlorobenzene
- 672 HYBIT *Hyalella azteca* bioconcentration test
- 673 IME Institute for Molecular Biology and Applied Ecology
- $k_1 Uptake rate$
- k_2 Depuration rate
- 676 Lab Laboratory
- 677 REACH Registration, Evaluation, Authorisation and Restriction of Chemicals
- 678 TG Test guideline
- 679 TRR Total radioactive residue
- 680 TWA Time weighted average

681 ANNEX 2: PARTICIPATING LABORATORIES (IN FREE ORDER)

- 682 L´Oréal, France
- 683 Eurofins, Germany
- 684 BT, Italy
- 685 INERIS, France
- 686 IES, Switzerland
- 687 BASF, Germany
- 688 Noack, Germany
- IBACON, Germany
- 690 FhG-IME, Germany
- 691 UBA, Germany
- 692 ECT, Germany
- 693

694 ANNEX 3: TOXICITY TEST WITH HYALELLA AZTECA AS PRELIMINARY

695 <u>EVALUATION FOR BIOCONCENTRATION TESTS</u>

696 Since toxic effects are not desired and should be avoided in bioconcentration studies (OECD,

- 697 2012), it is important to select an exposure concentration that does not cause adverse effects in698 the test species.
- Sufficient information on the toxicity of the test substance toward aquatic invertebrates is notalways available. Therefore, an appropriate exposure concentration has to be determined prior
- to the bioconcentration test in this case. The following paragraphs describe a proposal for such
- an evaluation in the style of an acute toxicity test with the endpoint mortality.
- A semi-static exposure scenario is proposed. However, if the substance characteristics do not
- allow for a semi-static exposure, the test setup may have to be changed to a flow-through one.
- The protocol is based on an evaluation that has been performed by three different laboratories
- for the substance prochloraz (CAS: 67747-09-5). All ring test partners have used this
- substance in bioconcentration studies in the ring test, accordingly a suitable exposure
- concentration was of high priority.
- 709 <u>Material:</u>
- Glass aquarium (as water bath)
- Beaker (250 mL)
- **712** Water heating element
- Shortened stainless-steel mesh shelters
- 714•DECOTABs
- 715 Artemia sieves
- Adult *H. azteca* (> 2 months old)

718	<u>Test setup:</u>
719	• 1 control
720	• 5 concentrations (treatments)
721	• 6 replicates per control/treatment
722	• 20 <i>H. azteca</i> per replicate
723	• Exposure duration: Approx. the planned duration of the uptake phase in the
724	bioconcentration test (here: 4 days / 96 hrs)
725	• Exposure method: semi-static (change to flow-through, if necessary)
726	• Daily medium renewal, temperature & O ₂ saturation & pH determination
727	• Randomized placement of beakers in water bath
728	• Daily feeding with DECOTABs, ¹ / ₄ cube per day per beaker
729	• Daily determination of water concentration (fresh and aged medium)
730	• Daily count of alive and, if visible, dead <i>H. azteca</i> in each beaker
731	Table 1: Concentrations applied in the toxicity range-finder test for Prochloraz with H.
732	azteca. Selection based on D. magna EC 50 (48 hrs) of 9.23 mg/L [Salesa et al. 2022] and the
733	exposure concentration of 50 μ g/L in the <i>H. azteca</i> bioconcentration tests in Kosfeld et al.
734	2020. A spacing of approx. 3.5 is used between all concentrations.

Scenario	Prochloraz in medium (mg/L)
Concentration 1	2.143
Concentration 2	0.612
Concentration 3	0.175
Concentration 4	0.050
Concentration 5	0.014
Control	0.000

735 <u>Pooling option:</u>

With 36 beakers in the test, daily media renewal and a determination of fresh and aged media concentrations of the test substance, a considerable number of samples will be generated. 'Sample pooling' can help to reduce the number of samples for analyses. Aliquots (5mL) collected from each beaker (total of 30 mL) should be sufficient to determine the average parameters of each treatment. This option should only be selected, if there are no indications that the treatment differs significantly from each other.

742 <u>Results from the prochloraz experiment:</u>

The preliminary toxicity test with prochloraz has validated that the exposure concentration of 0.05 mg/L that was used in Kosfeld et al. 2020 is safe and can be used in the ring test. First toxic effects could be seen only in concentrations of > 1 mg/L Prochloraz in the medium after an exposure time of 96hrs.

- **Table 2:** Mortality rates determined in the preliminary toxicity tests of the substance
- 753 prochloraz.

Lab	Test concentration,	Test concentration,	Mortality, mean
	nominal (mg/L)	TWA (mg/L)	(%)
Ineris	Control	0	0.8
	0.014	0.009	0.0
	0.05	0.043	4.9
	0.175	0.156	4.1
	0.612	0.551	5.8
	2.143	1.84	46.8
L'OREAL	Control	0	1.7
	0.014	0.010	0.0
	0.05	0.042	0.0
	0.175	0.136	0.8
	0.612	0.519	0.8
	2.143	1.660	13.3
IME	Control	0	3.3
	0.014	0.006	10.0
	0.05	0.025	3.0
	0.175	0.090	4.0
	0.612	0.314	7.5
	2.143	1.060	40.8

756	Validity	criteria

757	Based on the results of the toxicity test with prochloraz. the following validity criteria for a
758	preliminary. acute toxicity test with <i>H. azteca</i> are proposed.

• Control mortality < 10%

760	Trouble	shooting

Artemia sieves should have no holes/ pockets that allow the amphipods to hide in
 them. Otherwise *H. azteca* loss that is not mortality skews the results.

763

- 765 Kosfeld V. Fu Q. Ebersbach I. et al (2020) Comparison of Alternative Methods for
- 766 Bioaccumulation Assessment: Scope and Limitations of In Vitro Depletion Assays with
- 767 Rainbow Trout and Bioconcentration Tests in the Freshwater Amphipod Hyalella

768 *azteca*. Environ Toxicol Chem 39:1813–1825. https://doi.org/10.1002/etc.4791

- 769 OECD (2012) Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure. OECD
- Guidelines for the Testing of Chemicals. Paris. France.
- 771 Salesa B. Encarnación Sancho E. María Dolores Ferrando-Rodrigo M D. Javier Torres-Gavilá
- J. (2022). The prochloraz chronic exposure to *Daphnia magna* derived in biochemical
- alterations of F0 generation daphnids and malformed F1 progeny. Chemosphere.
- 774 Volume 307.

776 ANNEX 4: SAMPLING SCHEDULE

	Hours	H. azteca samples.	H. azteca	Test	Test
	110015	tissue analysis	samples. lipid	medium	medium
Uptake phase	0	3 x 20 H.a.**	3 x 10 H.a.**	2 x 10	
	1	3 x 20 H.a.			
	3	3 x 20 H.a.			
	6	3 x 20 H.a.			
	24	3 x 20 H.a.		2 x 10	2 x 10
	48	3 x 20 H.a.		2 x 10	2 x 10
	72	3 x 20 H.a.	3 x 10 H.a.		2 x 10
Depuration phase	1 (73)	3 x 20 H.a.		2 x 10	
	3 (75)	3 x 20 H.a.	CV		
	6 (78)	3 x 20 H.a.			
	24 (96)	3 x 20 H.a.		2 x 10	2 x 10
	48 (120)	3 x 20 H.a.	\mathbf{O}	2 x 10	2 x 10
	72 (144)	3 x 20 H.a.	3 x 10 H.a.		2 x 10
		$3 \ge 20 = 60 $ **	1 x 3 x 10 =	12 x 10	12 x 10
		12 x 3 x 20 = 720 H.a.	30**	mL	mL
			$2 \ge 3 \ge 10 = 60$		

777 Sampling schedule: Terbutryn – semi-static test setup

* Water concentration was checked in the aged and fresh medium prior to and after medium

- 779 exchange. respectively.
- ^{**} Hyalella collected from the batch of male amphipods just before test animals were placed

781 in the test chamber!

***further animals (approx. 20%) were added to compensate potential losses.

	Hours	H. azteca samples.	H. azteca	Test	Test	
		tissue analysis	samples. lipid	medium	medium	
Uptake phase	0	3 x 20 H.a.**	3 x 10 H.a.**	2 x 10		
	1	3 x 20 H.a.				
	3	3 x 20 H.a.				
	6	3 x 20 H.a.				
	24	3 x 20 H.a.		2 x 10	2 x 10	
	48	3 x 20 H.a.		2 x 10	2 x 10	
	72	3 x 20 H.a.	3 x 10 H.a.		2 x 10	
Depuration phase	1 (73)	3 x 20 H.a.		2 x 10		
	3 (75)	3 x 20 H.a.				
	6 (78)	3 x 20 H.a.				
	24 (96)	3 x 20 H.a.		2 x 10	2 x 10	
	48 (120)	3 x 20 H.a.		2 x 10	2 x 10	
	72 (144)	3 x 20 H.a.	3 x 10 H.a.		2 x 10	
		$3 \ge 20 = 60^{**}$	$1 \ge 3 \ge 10 =$	12 x 10	12 x 10	
		12 x 3 x 20 = 720 H.a.	30**	mL	mL	
		\sim	2 x 3 x 10 =			

784 Sampling schedule: Prochloraz – semi-static test setup

- * Water concentration was checked in the aged and fresh medium prior to and after medium
 avehance, respectively.
- 786 exchange. respectively.

** Hyalella collected from the batch of male amphipods just before test animals were placed

- 788 in the test chamber!
- 789 ***further animals (approx. 20%) were added to compensate potential losses.

	Hours	H. azteca samples.	H. azteca	Test medium
		tissue analysis	samples.	samples
Uptake phase	0	3 x 20 H.a.**	3 x 10 H.a.**	2 x 10 mL
	1	3 x 20 H.a.		
	3	3 x 20 H.a.		
	6	3 x 20 H.a.		
	24	3 x 20 H.a.		2 x 10 mL
	48	3 x 20 H.a.		2 x 10 mL
	72	3 x 20 H.a.	3 x 10 H.a.	2 x 10 mL
Depuration phase	1 (73)	3 x 20 H.a.		
	3 (75)	3 x 20 H.a.		
	6 (78)	3 x 20 H.a.		
	24 (96)	3 x 20 H.a.		2 x 10 mL
	48 (120)	3 x 20 H.a.		2 x 10 mL
	72 (144)	3 x 20 H.a.	3 x 10 H.a.	2 x 10 mL
		3 x 20 = 60**	1 x 3 x 10 =	14 x 10 mL
		12 x 3 x 20 = 720 H.a.	30**	
		$\frown \bigcirc$	2 x 3 x 10 =	

791 Sampling schedule: Prochloraz – flow-through test setup

** Hyalella collected from the batch of male amphipods just before test animals were placed

- in the test chamber!
- ***further animals (approx. 20%) were added to compensate potential losses.

^{*} Water concentration in the test medium was analysed daily.

	Hours	<i>H. azteca</i> samples.	H. azteca	Test medium
				1
Uptake phase	0	3 x 20 H.a.*	3 x 10 H.a. *	2 x 50 mL
	4	3 x 20 H.a.		
	8	3 x 20 H.a.		
	24 (day 1)	3 x 20 H.a.		2 x 50 mL
	48 (day 2)	3 x 20 H.a.		2 x 50 mL
	72 (day 3)	3 x 20 H.a.		2 x 50 mL
	96 (day 4)	3 x 20 H.a.		2 x 50 mL
	120 (day 5)	3 x 20 H.a.	3 x 10 H.a.	2 x 50 mL
Depuration phase	4 (124)	3 x 20 H.a.		2 x 50 mL***
	8 (128)	3 x 20 H.a.		
	24 (144)	3 x 20 H.a.		
	48 (168)	3 x 20 H.a.		
	72 (192)	3 x 20 H.a.		
	96 (216)	3 x 20 H.a.		
	120 (240)	3 x 20 H.a.	3 x 10 H.a.	
		$1 \ge 3 \ge 20 = 60$	$1 \ge 3 \ge 10 = 30$	
				14 x 50 mL
		14 x 3 x 20 = 840	$2 \times 3 \times 10 = 60$	
1				

797 Sampling schedule: HCB – flow-through setup

- 798 * Hyalella collected from the batch of male amphipods just before test animals were placed in
- the test chamber!
- ** further animals (approx. 20%) were added to compensate potential losses.
- 801 *** Additional water sampling during the depuration phase may have been required if the
- 802 measured test substance concentration was > LOQ at the beginning of the depuration phase.
- 803
- 804

ANNEX 5: EXPERIMENTAL CONDITIONS

Table 1: Exposure media and experimental conditions during semi-static and flow through bioconcentration experiments.

Substance	Exposure	Lab No.	Exposure medium	Aeration	Temp	perature		pH		Oxygen saturation				<i>H. azteca</i> sample	
						°C	c V		mg/L %			%	weight (mg) per 20 amphipods		
					Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Terbutryn	semi-static#	01	Borgmann medium	no	24.3	25.0	8.1*	8.1*	8.64**	8.79**	95*	97.7*	45.89	69.07	
	semi-static##	01	Borgmann medium	no	24.3	24.9	8.05*	8.1*	8.73**	8.82**	97*	98*	46.09	77.98	
	semi-static	02	Borgmann medium	no	25.1	27.5	6.9	7.4	n.a.	n.a.	n.a.	n.a.	14.76	67.79	
	semi-static	03	Borgmann medium	yes	23.5	24	7.85	8.2	6.21	8.72	62.1	87.2	59.16	85.62	
	semi-static	04	Borgmann medium	no	23	25	7.5	8	6,68**	8,46**	82	100	25.02	74.29	
	semi-static	05	Reconstituted medium	no	23.4	25.6	7.2	8.1	2.9	8.6	34.7	101.4	37.81	64.02	
	semi-static	06	Elendt M4 medium + NaBr	yes	23	24.3	7.8	8.06	5.94	8.97	71	103	26.2	65.45	
Prochloraz	semi-static	01	Borgmann medium	no	25.2	25.4	8.05*	8.15*	8.15**	8.9**	92.3*	98*	66.7	84.58	
	semi-static	02	Borgmann medium	no	26.7	29	6.7	6.9	3.35	8,9*	41.9	111.3	39.67	134.5	
	semi-static	03	Borgmann medium	yes	24.1	25.2	7.42	7.89	7.22	8.55	72.2	85.5	62.79	84.6	

	semi-static	04	Borgmann medium	no	23	25	7.49	7.9	7,09**	8,46**	87	100	35.85	51.88
	semi-static	05	Reconstituted medium	no	24	26.4	7.3	8.2	4	8.5	49.6	102.9	30.12	48.46
	semi-static	06	Elendt M4 medium +	yes	22.6	25	7.61	8.05	6.81	8.46	83	102	53.78	73.18
			NaBr											
	flow-through	08	Borgmann medium	yes	23	24	7.72	8.16	8.1	8.5	96,2**	99,1**	55.75	105.2
	flow-through	09	Borgmann medium	yes	22.9	23.5	7.16	7.76	7,46*	8,38*	89	99	66	102
	flow-through	10	ISO medium	no	28.5	65.28	7.65	8	8.83	9.65	103	112	23.5	25.4
	flow-through	11	Aerated, de-chlorinated	yes	24.4	24.8	7.47	7.63	7.65	8.85	93.4	106.9	56.5	88
			tap water											
¹⁴ C-Prochloraz	semi-static	06	Elendt M4 medium +	yes	23	24	7.64	8.13	6.84	8.27	82	101	55.41	78.89
			NaBr											
	flow-through	07	Borgmann medium	yes	23.6	24.7	7.6	8.1	8	10.1	96	121	38.9	64.5
НСВ	flow-through	08	Borgmann medium	yes	24	26	8.03	8.31	7.17	8.1	86,8**	98**	59.22	91.43
	flow-through	09	Borgmann medium	yes	23.2	23.9	7.38	7.89	7,7**	8,2**	92	99	91.3	121.73
	flow-through	10	ISO medium	no	23.7	26.7	7.4	8	5.8	9.1	69	106	51.06	82.19
	flow-through	11	Aerated, de-chlorinated	yes	25.1	25.5	7.22	7.66	8.15	9.3	101.2	111.9	56.82	83.15
			tap water											
	flow-through	11	Aerated, de-chlorinated	yes	25	25.5	7.2	7.75	8.22	9.49	102.1	113.5	31.69	48.35
			tap water											

* determined in the fresh medium prior to the substance addition

** calculated values (Table used for calculations: <u>https://pubs.usgs.gov/tm/09/a6.2/tm9a6.2.pdf</u>)

long uptake phase (119h), regular depuration phase

regular uptake phase, long depuration phase (119h)

Citation for dissolved oxygen calculation table: U.S. Geological Survey, 2020, Dissolved oxygen: U.S. Geological Survey Techniques and Methods, book 9, chap. A6.2, 33 p., https://doi.org/10.3133/tm9A6.2. [Supersedes USGS Techniques of Water-Resources Investigations, book 9, chap. A6.2, version 3.0.]

ANNEX 6: RESULTS OF THE BIOCONCENTRATION EXPERIMENTS CONDUCTED IN THE HYBIT RING TEST.

Table 1: Time weighted average water concentrations, tissue concentrations at steady-state and steady-state duration.

Laboratory	Test	TWA	±20 %	All	If ± 20 % TWA range	Tissue concentration	Steady state
(exposure method)	substance	$(\mu g/L)$	TWA	concentrations in	was crossed. at which	at steady-state	duration
			range	± 20 % TWA	concentration?	(mg/kg)	
			(µg/L)	range?			
01 (semi-static)	Terbutryn [#]	49.90	39.92 -	Yes		3.086	24 – 119 hrs
			59.88				
		40.20	20.64	37		0.170	40.721
01 (semi-static)	Terbutryn""	48.30	38.64 -	Yes	-	3.1/3	48 - 72 hrs
			57.96				
02 (semi-static)	Terbutryn	34.76	27.81 -	Yes	-	1.202	24 – 72 hrs
			41.71				
03 (semi-static)	Terbutryn	46.51	37.21 -	Yes	-	0.934	24 – 72 hrs
			55.81				

04 (semi-static)	Terbutryn	48.23	38.58 -	Yes	-	1.560	24 – 72 hrs
			57.87			5	
05 (semi-static)	Terbutryn	48.67	38.95 -	Yes	-	1.526	24 – 72 hrs
			58.42			3	
06 (semi-static)	Terbutryn	49.68	39.74 –	Yes	- C V	1.093	6 – 72 hrs
			59.62	6	0		
01 (semi-static)	Prochloraz##	48.35	38.68 -	Yes	-	4.642	48 – 72 hrs
			58.02				
02 (semi-static)	Prochloraz	44.57	35.66 -	Yes	-	5.687	24 – 72 hrs
			53.49				
03 (semi-static)	Prochloraz	44.34	35.47 –	Yes	-	3.452	24 – 72 hrs
			53.21				
04 (semi-static)	Prochloraz	50.03	40.02 -	Yes	-	4.832	24 – 72 hrs
			60.03				

05 (semi-static)	Prochloraz	61.22	48.79 -	Yes	-	5.844	24 – 72 hrs
			73.46			5	
06 (semi-static)	Prochloraz	46.26	37.01 -	Yes	-	2.842	6 – 72 hrs
			55.52			3	
06 (semi-static)	¹⁴ C-	52.72	42.18 -	Yes	· · · ·	14.63	48 – 72 hrs
	Prochloraz		63.26	6			
07 (flow-through)	¹⁴ C-	45.53	36.43 -	Yes	-	11.86	48 – 72 hrs
	Prochloraz		54.64				
08 (flow-through)	Prochloraz	53.04	42.43 -	Yes	-	5.797	48 – 72 hrs
			63.65				
09 (flow-through)	Prochloraz	41.52	33.21 -	Yes	-	3.787	24 – 72 hrs
			49.82				
10 (flow-through)	Prochloraz	49.29	39.43 –	No	65.87 and 67.94 at	4.146	6 – 72 hrs
			59.15		0 hrs.		

11 (flow-through)	Prochloraz	53.26	42.61 -	Yes	-	4.822	48 – 72 hrs
			63.91			5	
08 (flow-through)	HCB	0.316	0.253 –	No	0.396 at 0 hrs and	6.993	72 – 120 hrs
			0.379		0.252 at 24 hrs	3	
09 (flow-through)	HCB	0.833	0.667 –	Yes		17.058	72 – 120 hrs
		0.055	0.007	105		17.050	72 120 115
			1.0				
10 (flow-through)	HCB	0.826	0.661 –	No	0.645 at 0 hrs and	12.075	72 – 120 hrs
			0.991		1.106 at 120 hrs		
11 (flow-through)	HCB ^{\$}	0.841	0.673 -	Yes	-	12.674	72 – 120 hrs
			1.010				
			1.010				
11 (flow through)		0.921	0.665	Vec	1.066 at 120 hm	14.016	72 120 hm
11 (How-through)		0.831	0.005 -	res	1.000 at 120 nrs	14.910	12 - 120 nrs
			0.997				

= long uptake phase (120 h). regular depuration phase
= regular uptake phase. long depuration phase (120 h)
\$ = adult *H. azteca* (> 2 months); \$\$ = juvenile *H. azteca* (approx. 1 month old)

		_							_		
Laboratory (exposure method)	Test substance	k1	$(\pm$ std. error)	k ₂	$(\pm$ std. error)	BCF _{ss}	Error	BCF _{ssL}	Error	BCF _k	Error
01 (semi-static)	Terbutryn [#]	19.95	1.995	0.338	0.033	62	36.1	66	12.4	59	8.3
01 (semi-static)	Terbutryn##	27.30	1.930	0.553	0.064	66	10.1	62	11.1	49**	6.7**
02 (semi-static)	Terbutryn	8.68	2.029	0.287	0.066	35	7.3	47*	14.4*	30	9.9
03 (semi-static)	Terbutryn	6.62	0.5	0.325	0.023	20	1.9	33	6.7	20	2.1
04 (semi-static)	Terbutryn	11.69	0.8	0.385	0.026	32	3.2	39	8.9	30	2.9
05 (semi-static)	Terbutryn	8.43	0.4	0.272	0.013	31	3.7	31	8.2	31	2.2
06 (semi-static)	Terbutryn	8.36	1.0	0.356	0.044	22	5.7	24	6.5	23	4.1
01 (semi-static)	Prochloraz##	16.63	2.0	0.204	0.024	96	9.10	93	15.6	82	14.0
02 (semi-static)	Prochloraz	21.83	1.3	0.170	0.009	128	15.9	174*	44.4*	128	10.3
03 (semi-static)	Prochloraz	19.57	1.3	0.240	0.016	78	12.4	146	33.9	81	7.8
04 (semi-static)	Prochloraz	16.04	1.2	0.166	0.011	97	12.1	91	22.3	96	9.6
05 (semi-static)	Prochloraz	17.42	1.0	0.180	0.010	95	9.4	75	14.0	97	7.8
06 (semi-static)	Prochloraz	19.49	1.6	0.288	0.023	61	11.3	132	31.3	68	7.8
06 (semi-static)	¹⁴ C-Prochloraz	13.75	1.0	0.048	0.004	278	9.3	333	63.6	286	30.9
07 (flow-through)	¹⁴ C- Prochloraz	13.01	0.8	0.048	0.003	260	23.1	355*	85.1*	271	24.4
08 (flow-through)	Prochloraz	14.73	1.1	0.145	0.011	109	9.7	173	32.9	101	10.8
09 (flow-through)	Prochloraz	13.52	0.7	0.148	0.008	91	15.3	86	15.9	91	6.8
10 (flow-through)	Prochloraz	36.05	2.7	0.422	0.032	84	18.1	115	35.5	85	9.1
11 (flow-through)	Prochloraz	13.29	1.2	0.155	0.014	91	8.8	118	24.0	86	10.9
08 (flow-through)	НСВ	433.82	14.4	0.014	0.001	22130	4318	27662	6289	32064	1778
09 (flow-through)	НСВ	230.20	16.1	0.010	0.001	20473	2657	23622	4164	30729	2823
10 (flow-through)	НСВ	242.62	9.3	0.009	0.001	14619	3782	19935*	6805*	25780	1917
11 (flow-through)	HCB ^{\$}	360.68	13.0	0.019	0.001	15070	1495	17389	2646	18544	1014
11 (flow-through)	HCB ^{\$\$}	451.39	11.2	0.022	0.001	17946	2295	19228	3201	20260	741

Table 2: Uptake rates (k₁). depuration rates (k₂) and kinetic and steady-state BCF values calculated with the R tool 'bcmfR', if not stated differently,

followed by lipid normalization to a lipid content of 3%. BCF errors were calculated via error propagation.

^{\$} = adult *H. azteca* (> 2 months); ^{\$\$} = juvenile *H. azteca* (approx. 1 month old)

* A default lipid content of $2.2 \pm 0.3\%$ was used due to unrealistic or non-available lipid determination results

** Calculation via bcmfR failed. kinetic BCFs were calculated manually (sequential method)

ANNEX 7: PRELIMINARY LIPID CONTENT DETERMINATION: RESULTS

Of the eleven ring test participants. eight were able to participate in the preliminary test on lipid content determination. In case of the remaining three labs. the lab equipment was not sensitive enough for the analysis. Hyalella samples were provided by Fraunhofer IME having a lipid content of 2.1 ± 0.1 % (benchmark). A comparison of the results is shown in Figure 1. Seven labs met this benchmark. two labs displayed deviations and were contacted for troubleshooting. A mean lipid content of 2.2 ± 0.15 % was calculated from the data that met the benchmark value. The mean lipid value for the full dataset was 2.6 ± 0.98 % (Annex 8)

Figure 1: Results of the lipid determination preliminary test. Labs marked with an * did not participate in the preliminary test due to missing equipment.

ANNEX 8: LIPID CONTENT OF HYALELLA AZTECA DETERMINED IN EACH HYBIT BIOCONCENTRATION EXPERIMENT.

Lipid contents were determined gravimetrically by using the Smedes protocol. Results shaded in grey were considered unrealistic (e.g. negative

lipid content values) pointing towards a problem with the weighing technique's sensitivity and were not used for further calculations.

Laboratory	Test substance	Mean lipid content at	Mean lipid content at end	Mean lipid content at end of	Mean lipid content over entire test
(exposure method)		test start \pm SD (%)	of uptake phase ± SD (%)	depuration phase \pm SD (%)	duration \pm SD and rel. SD (%)
01 (semi-static)	Prochloraz	3.0 ± 0.31	3.4 ± 0.49	2.8 ± 0.09	3.1 ± 0.43 (14.0%)
02 (semi-static)	Prochloraz	-0.25 ± 0.78	0.75 ± 0.67	-0.25 ± 1.37	-0.01 ± 1.13 (13112%)
03 (semi-static)	Prochloraz	1.9 ± 0.19	1.5 ± 0.14	1.4 ± 0.15	1.6 ± 0.27 (16.9%)
04 (semi-static)	Prochloraz	2.6 ± 0.18	3.0 ± 0.11	4.0 ± 0.58	3.2 ± 0.68 (21.3%)
05 (semi-static)	Prochloraz	3.4 ± 0.57	3.8 ± 0.65	4.2 ± 0.06	3.8 ± 0.60 (15.7%)
06 (semi-static)	Prochloraz	1.6 ± 0.03	1.2 ± 0.13	N/A	1.4 ± 0.21 (14.8%)
06 (semi-static)	¹⁴ C-Prochloraz	1.9 ± 0.30	2.7 ± 0.30	2.8 ± 0.14	2.5 ± 0.47 (18.9%)

07 (flow-through)	¹⁴ C-	4.9 ± 0.45	6.0 ± 1.52	4.3 ± 0.43	5.1 ± 1.19 (24.7%)
	Prochloraz				
08 (flow-through)	Prochloraz	1.9 ± 0.10	1.7 ± 0.20	2.2 ± 0.38	1.9 ± 0.32 (16.5%)
09 (flow-through)	Prochloraz	3.4 ± 0.08	3.0 ± 0.06	3.1 ± 0.31	3.2 ± 0.26 (8.2%)
10 (flow-through)	Prochloraz	-0.1 ± 2.57	6.1 ± 5.69	4.1 ± 2.01	3.4 ± 4.56 (136%)
11 (flow-through)	Prochloraz	1.8 ± 0.09	2.6 ± 0.15	2.5 ± 0.30	2.3 ± 0.41 (17.6%)
01 (semi-static)	Terbutryn [#]	2.9 ± 0.21	2.6 ± 0.26	2.9 ± 0.10	2.8 ± 0.24 (8.4%)
01 (semi-static)	Terbutryn ^{##}	3.5 ± 0.16	3.0 ± 0.27	3.3 ± 0.01	3.2 ± 0.30 (9.3%)
02 (semi-static)	Terbutryn	-0.08 ± 0.91	-0.39 ± 1.07	0.5	-0.13 ± 0.97 (775%)
03 (semi-static)	Terbutryn	1.8 ± 0.08	1.5 ± 0.20	2.0 ± 0.34	1.8 ± 0.32 (18.5%)
04 (semi-static)	Terbutryn	2.3 ± 0.60	2.3 ± 0.34	2.9 ± 0.27	2.5 ± 0.52 (21.0%)
05 (semi-static)	Terbutryn	2.4 ± 0.70	3.2 ± 0.60	3.2 ± 0.44	3.0 ± 0.70 (23.4%)

06 (semi-static)	Terbutryn	2.9 ± 0.05	2.6 ± 0.23	$1.0 \pm 0.13^{\Pi}$	2.7 ± 0.23 (8.45%)
08 (flow-through)	НСВ	2.1 ± 0.09	2.3 ± 0.20	2.7 ± 0.14	2.4 ± 0.28 (11.9%)
09 (flow-through)	НСВ	2.3 ± 0.15	3.0 ± 0.10	2.7 ± 0.13	2.6 ± 0.31 (11.7%)
10 (flow-through)	НСВ	6.8 ± 1.02	7.2 ± 0.74	9.0 ± 5.20	7.7 ± 3.24 (42.2%)
11 (flow-through)	HCB ^{\$}	2.3 ± 0.08	2.8 ± 0.19	2.7 ± 0.34	2.6 ± 0.30 (11.6%)
11 (flow-through)	HCB ^{\$\$}	2.4 ± 0.05	2.9 ± 0.11	3.1 ± 0.12	2.8 ± 0.30 (10.8%)

[#] = long uptake phase (120 h). regular depuration phase

^{##} = regular uptake phase. long depuration phase (120 h)

= adult *H. azteca* (> 2 months)

^{\$\$} = juvenile *H. azteca* (approx. 1 month old XYZ)

 $\Pi^{=}$ Pale and sluggish *H. azteca*. excluded from mean calculation

Note: Lab 02 and 10 did not participate in the preliminary lipid content determination test (see Annex 7). In both labs the gravimetric determination

of lipid contents resulted in unrealistic values during the main test which underlines the need for careful establishment of the methods.