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1. This note outlines the methodological steps applied to empirically identify and 

econometrically approximate the different technology classes for each national farm type. 

Furthermore, it describes the statistical procedure that has been used to represent a variety 

of farm classes within the number of classes determined empirically based on a 

combination of differences in multiple farm specific characteristics as well as multiple 

netput (i.e. output and input) variables (see in more detail Sauer and Morrison-Paul, 2013). 

Technology model 

2. The first part of the econometric modelling exercise consists in choosing a 

technology function to approximate the production process of a farm. Depending on 

theoretical considerations and data availability, different netput functions (e.g. production, 

cost, profit, distance or transformation function) and functional forms can be chosen for 

this purpose. From a purely theoretical perspective, (dual) functional representations that 

allow for the inclusion of price-related information are desirable in order to map the 

technical and allocative behaviour of farm managers. However, the availability of multi-

output related information seems problematic for many national farm accounting systems. 

Furthermore, in order to avoid the disadvantages of normalising by one input or output as 

required for a distance function representation and therefore implying econometric 

endogeneity problems (as the right-hand side variables are expressed as ratios with respect 

to the left-hand side variables, see for example Paul and Nehring, 2005), a single-output 

based production function representation applying a second order approximation in the 

form of a flexible translog functional form is preferred. 

3. The analysis considers a production function model representing the most output 

producible from a given input base and existing production conditions (representing the 

feasible production set). In general form, this function can be written as 0 = F(Y, X, T), 

where Y is the farm’s output, X is a vector of production related inputs and T is a vector 

of shift variables reflecting external production conditions. Applying the implicit function 

theorem F can be explicitly specified with one of the arguments on the left-hand side of 

the equation. Hence, the production function Y = G(X, T) can be estimated with Y as the 

output of the farm. This specification of the farm’s production technology does not reflect 

endogeneity of output and input choices, but simply represents the most farm output that 

can technologically be produced given the levels of the other arguments of the F(˖) 

function. The production function is approximated by a flexible functional form (second-
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order approximation), to accommodate various interactions among the arguments of the 

function including non-constant returns to scale and technical change biases. 

4. This second order flexible production function model can be formulated as: 

𝑌𝑖𝑡 = 𝐹(𝑿𝑖𝑡 , 𝑻) =  𝛼0 + ∑ 𝛽𝑘𝑙𝑛𝑋𝑘
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𝑘=1

+ ∑ ∑ 𝛾𝑘𝑙𝑙𝑛𝑋𝑘𝑙𝑛𝑋𝑙
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+ 𝛿𝑇𝑇 + 𝛿𝑇𝑇𝑇𝑇 + ∑ 𝛿𝑘𝑇𝑙𝑛𝑋𝑘𝑇

𝑛

𝑘=1

 

[1] 

for farm i in period t with Y = total milk (crop) output, X is a vector of Xk inputs depending 

on the type of production, and a time trend T as the only component of the vector T. By 

using such a flexible functional form, observable technology differences among production 

units are accommodated to a certain extent as derived measures (such as output elasticities) 

allow for different netput mixes, hence, will differ per observation. 

5. Unobservable technology heterogeneity is further partly accommodated by the 

error term in the estimation model. However, the factors leading to technology 

heterogeneity between farms are not directly represented by estimating [1] alone and 

therefore parameter estimates might be biased (Griliches, 1957). Consequently, derived 

policy conclusions remain at a very general level. Recognising and evaluating 

heterogeneity among production systems and exploring differences in technical change 

developments requires a more explicit approach, consisting in estimating the technology 

separately for different groups or ‘classes’ of farms. Hence, the estimation of production 

technology as outlined by [1] will be combined with a probabilistic approach that allows 

to simultaneously consider multiple characteristics of farms operating in a specific 

production system. This approach will result in an adequate approximation of the 

individual farm’s production technology by considering a multitude of characteristics and 

therefore robustly identifying various farm groups or classes along these characteristics, 

for which technologies are then estimated. Hence, we combine the estimation of the 

production structure as outlined in [1] with the estimation of a latent class structure (see 

for example Greene, 2002 and 2005; Orea and Kumbhakar, 2004; Sauer and Morrison-

Paul, 2013). 

Class identification model 

6. Different methods can be applied to explicitly consider technological heterogeneity 

in farm level production (Bravo-Ureta, 1986; Tauer, 1998; Newman and Matthews, 2006; 

Gillespie et al., 2009; Kumbhakar et al., 2009). The data sample can simply be chosen 

based on some homogenous production criteria (e.g. a norm technology defined by the 

average technology in the sample) or can be divided in sub-samples to estimate different 

technologies based on a particular characteristic (e.g. conventional versus organic or small 

scale versus large scale). At a higher methodological level, multiple criteria based cluster 

analysis can be applied to divide the sample according to similar farm or production related 

characteristics (using between versus within variances to group observations). 

Furthermore, random coefficient estimators have been used to model each farm as a unique 

technology based on continuous parameter variation (Alvarez et al., 2008; Greene, 2005). 



      │ 3 
 

 
      

7. The application of latent class structures (LCM) to empirically identify and 

estimate heterogeneous classes of observations (farms or firms) results in a separation of 

the data into multiple technological classes (groups or categories). This separation is based 

on estimated probabilities of class memberships considering multiple pre-specified criteria. 

Each farm is then assigned to a specific class based on these probabilities while both the 

estimated technological (flexible TL function) as well as the estimated probability 

relationships are considered (Sauer and Morrison-Paul, 2013; Balcombe et al., 2006). 

Hence, a latent class modelling approach overcomes possible estimation bias due to 

omitted variables with respect to the class identification vector and also effectively 

addresses endogeneity suspicions by a simultaneous estimation approach (i.e. a technology 

model and class identification model). In more detail, the LCM estimates a multi-nomial 

logit model together with the technological structure (whereas the number of parameters 

to be estimated might be limited by available degrees of freedom). Statistical tests can be 

performed to choose the most adequate number of classes/technologies to be considered. 

Furthermore, in addition to multiple technologies, a flexible functional form with a random 

effects panel estimation routine can be applied (Greene, 2005; Alvarez and delCorral, 

2010) to capture farm heterogeneity over time. In this project the focus is explicitly on 

measuring productivity instead of unobserved inefficiency (based on a frontier 

specification) to reflect the specific interest in relative productivity levels between farms 

considering country level contextual specificities. 

8. The latent class model in a more general form can be formally denoted as the 

technology model (outlined in equation [1]) for class c: 

𝑌𝑖𝑡 = 𝐹(𝑿𝑖𝑡 , 𝑻) =  (𝛼0 + ∑ 𝛽𝑘𝑙𝑛𝑋𝑘
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[2] 

where c denotes the class including farm i implying a different technology function for 

each class c. Assuming a normal distribution for the error term, the likelihood function for 

farm i at time t for class c, LFict, has the standard Ordinary Least Squares (OLS) form. The 

unconditional likelihood function for farm i in class c, LFic, is the product of the likelihood 

functions in each period t, and the likelihood function for each farm, LFi, which is the 

weighted sum of the likelihood functions for each class c (with the prior probabilities of 

class c membership as the weights), i.e. 𝐿𝐹𝑖 = ∑ 𝑃𝑐 𝑖𝑐
𝐿𝐹𝑖𝑐. These prior probabilities Pic are 

parameterised using a multinomial logit model (MNL) consisting of indicators to describe 

the different dimensions of farm performances and characteristics and which are used to 

determine the probabilities of class memberships or separate technologies (separating or q-

variables qi). 

9. Hence, the MNL parameters θc are estimated for each technology class (relative to 

one class serving as numeraire) 

𝑃𝑖𝑐 = 𝑒𝑥𝑝(𝜃𝑐𝑞𝑖) [∑ 𝑒𝑥𝑝(𝜃𝑐𝑞𝑖)

𝑐

] = 𝑒𝑥𝑝 (𝜃0𝑐 + ∑ 𝜃𝑛𝑐𝑞𝑛𝑖𝑡

𝑛

) [∑ 𝑒𝑥𝑝 (𝜃0𝑐 + ∑ 𝜃𝑛𝑐𝑞𝑛𝑖𝑡

𝑛

)

𝑖

]⁄⁄  
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[3] 

 

where the qnit denote the N q-variables/indicators for farm i in time period t. 

Multi-dimensional indices 

10. As outlined earlier farms are production units which differ along multiple 

characteristics: production structure, environmental impact and sustainability, innovation 

behaviour, commercialisation focus, openness towards cooperation, input intensity and 

capital endowment, diversity of production, individual characteristics such as age or 

education, as well as locational conditions. A multitude of continuous or binary variables 

in level form can be used to directly approximate these farm characteristics as elements of 

the class identification vector. However, including all those variables would lead to scaling 

and weighting problems and also, depending on sample size, most probably to limitations 

regarding the number of variables that can be considered due to missing degrees-of-

freedom. Hence, multi-dimensional indexes are defined and statistically estimated, to then 

be incorporated as elements of the class identification vector q. 

11. The various indices are chosen for their potential to contribute to robustly identify 

and distinguish individual farms. These multi-dimensional indexes consist of different 

variables that measure underlying farm characteristics relevant for the dimension of the 

specific index to approximate. These individual index components can be equally weighted 

with regard to their importance for the overall index score. Further, the weights for these 

components could be chosen following specific expert guidance or based on trial-and-error 

procedures applying statistical significance criteria with respect to the parameters 

estimated for the g-vector elements. However, the principal components analysis (PCA) is 

applied as a statistically well-defined and empirically tested multivariate method to 

estimate significant and robust weights for the indices’ components. The PCA is a method 

to conduct a conceptual factor analysis that will then create statistically robust indexes 

based on different variables (for an overview of PCA, see Jackson, 2003 or Afifi et al., 

2012). 

12. PCA is a multivariate statistical technique used for data reduction. The leading 

eigenvectors (i.e. principal components) from the eigen decomposition of the correlation 

or covariance matrix of the variables (here index components) describe a series of 

uncorrelated linear combinations of the variables that contain most of the variance. In 

addition to data reduction, the eigenvectors from a PCA can be further inspected to learn 

more about the underlying structure of the data. Hence, in a first step such a PCA is run for 

each farm related dimension (e.g. production structure) resulting in the eigenvalues for the 

individual components (e.g. share of family labour and area or herd size). The eigenvalue 

for each component represents how much of variance the component explains (i.e. factor 

loading). Subsequently, the factor loadings are used to calculate the index score for each 

observation via an optimally-weighted linear combination of the factor scores for the 

individual components- characteristics.  

13. Accordingly, up to seven different farm indices are defined and estimated for each 

observation of the respective sample using the deviations of each index component from 

the sample mean to adequately consider differences between member countries’ farm 

structures and conditions (For example, an average family farm in Italy in terms of family 

labour share may be very different from an average family farm in terms of family labour 

share located in Estonia). Scaling issues between different components (e.g. share of family 
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labour versus herd size or acreage) are further addressed by calculating the z-score based 

deviations for these components, which are then used for the PCA based index creation 

following the statistical procedure outlined above. For subsequent analyses up to seven 

multi-dimensional indexes are chosen to identify and measure class membership per farm 

and year. These indexes are estimated as outlined above subject to type of production and 

data availability. Table 1 provides an overview of the choice of indexes’ components. The 

significance and the posterior probabilities of resulting q-variable coefficient’s estimates 

are evaluated for the individual farm classes. Furthermore, statistical tests are applied to 

robustly determine the number of classes (for example, the Akaike Information 

Criterion/Schwarz and Bayesian information criterion [AIC/SBIC] tests, described in 

Greene, 2005) by testing down (i.e. to verify if fewer classes would be statistically 

supported). 

Table 1. Indexes for farm classification 

Components for multi-dimensional indices as elements of class identification vector q, see equation [3]. 

Indexes 
Index 1 

Structure 
Index 2 

Sustainability 

Index 3 

Innovation/ 
Commerce/Coop 

Index 4 
Intensity 

Index 5 
Diversity 

Index 6 
Individual 

Index 7 
Location Components 

Acreage x       

Age      x  

Agritourism income   x     

Altitude       x 

Biofuel income   x     

Capital per cow    x    

Capital per labour    x    

Chemicals usage  x      

Education      x  

Environmental 
subsidies 

 x      

Experience      x  

Family labour share x       

Forestry production     x   

Gender      x  

Herd size x       

Herfindahl index     x   

Investment subsidies   x     

Labour per cow    x    

Land irrigated share    x     

Land rented share   x     

Less-favoured-area       x 

Material per land    x    

Natura2000       x 

Net investment ratio   x     

Organic production  x      

Ownership x       

Production diversity     x   

Stocking density  x      

Total assets    x    

Note: Final choice of indices’ components depends on production type and data availability. 
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Full model specifications 

14. The combined (technology and class identification) model can be estimated in a 

cross-sectional or a panel form whereas for the full-model specification a random effects 

based estimator can be applied (Sauer and Morrison-Paul, 2013; Greene, 2005). The panel 

data related specification of the model is then: 

𝑌𝑖𝑡|𝑐 =   𝛼0 + ∑ 𝛽𝑘,𝑐𝑙𝑛𝑥𝑘𝑖𝑡

𝑛

𝑘=1

+
1

2
∑ 𝛽𝑘𝑘,𝑐𝑙𝑛𝑋𝑘𝑖𝑡𝑙𝑛𝑋𝑘𝑖𝑡

𝑛

𝑘=1

+ ∑ ∑ 𝛾𝑘𝑙,𝑐𝑙𝑛𝑥𝑘𝑖𝑡𝑙𝑛𝑥𝑙𝑖𝑡

𝑛

𝑙=𝑘+1

𝑛−1

𝑘=1

+ 𝛿𝑇,𝑐𝑡𝑖𝑡 + 𝛿𝑇𝑇,𝑐𝑡𝑖𝑡𝑡𝑖𝑡 + ∑ 𝛿𝑘𝑇,𝑐𝑙𝑛𝑥𝑘𝑖𝑡𝑡𝑖𝑡

𝑛

𝑘=1

+ 𝜀𝑖𝑡|𝑐 

[4] 

with farm i in time period t and class c and ε denoting an independent and identically 

distributed (iid) stochastic term. For an alternative specification each observation is 

considered as a separate entity and the model is then estimated as a cross-sectional 

specification. This model allows farms to switch between technology classes and hence, 

changes in production systems over the time period can be approximated. 

𝑌𝑖|𝑐 =   𝛼0 + ∑ 𝛽𝑘,𝑐𝑙𝑛𝑥𝑘𝑖

𝑛

𝑘=1

+
1

2
∑ 𝛽𝑘𝑘,𝑐𝑙𝑛𝑋𝑘𝑖𝑙𝑛𝑋𝑘𝑖

𝑛

𝑘=1

+ ∑ ∑ 𝛾𝑘𝑙,𝑐𝑙𝑛𝑥𝑘𝑖𝑙𝑛𝑥𝑙𝑖

𝑛

𝑙=𝑘+1

𝑛−1

𝑘=1

+ 𝛿𝑇,𝑐𝑡𝑖

+ 𝛿𝑇𝑇,𝑐𝑡𝑖𝑡𝑖 + ∑ 𝛿𝑘𝑇,𝑐𝑙𝑛𝑥𝑘𝑖𝑡𝑖

𝑛

𝑘=1

+ 𝜀𝑖|𝑐 

[5] 
 

with farm i, class c and ε denoting again the independent and identically distributed (iid) 

stochastic term. 

15. As both model components (technology related and class identification related) are 

simultaneously estimated the probabilities Pic (see equation [3]) are functions of the 

parameters of the MNL model and the log-likelihoods LFic are functions of the technology 

parameters for class c farms. Accordingly, the overall likelihood function for farm i in 

class c consists of both sets of parameters whereas the overall log-likelihood function for 

the complete model is maximised based on the sum of the individual log-likelihood 

functions. Finally, due to degrees-of-freedom problems related to the parameter intensive 

LCM specification, as done in Sauer and Morrison-Paul (2013), the models in [4] and [5] 

are estimated as a reduced (or constrained) form approximation to the underlying translog 

functional form. Thus, the resulting (first-order and own second-order) elasticities 

represent the average contributions of each input to production, as well as overall technical 

change and returns to scale for each class. To accommodate and measure the second-order 

effects involving input technical change biases and substitution, the full TransLog 

(TL) form for the full sample and the separate classes will also be estimated. If the 

distinctions among classes capture key differences in technology, as found for all country 

cases investigated, the elasticities for the constrained and fully flexible functional forms 
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will be comparable, but incorporating the interaction terms will allow assessment of cross 

effects between inputs. 

Performance measures 

16. Several performance measures derived from the technology related component of 

the combined estimation model outlined in equation [3] and [4] or [5] are explored. In a 

first step, the relative levels of productivity are estimated among the different identified 

farm classes based on the predicted output levels for a given amount of inputs at the sample 

means (Alvarez and Corral, 2010). The hypothetical productivity levels are then estimated 

for each class assuming an alternative technology and the differences between real and 

hypothetical technologies are compared. In a second step, productivity dynamics, more 

commonly noted as technical change, is considered per class and technology. Such 

technical change is measured by shifts in the overall production frontier over time using 

the output elasticity with respect to T 

𝜖𝑦,𝑇 |𝑐 =
𝜕𝑙𝑛𝑌

𝜕𝑇
 |𝑐 = 𝛿𝑇,𝑐 + 2 ∗ 𝛿𝑇𝑇,𝑐𝑡𝑖 + ∑ 𝛿𝑘𝑇,𝑐𝑙𝑛𝑥𝑘𝑖

𝑛

𝑘=1

 

[6] 
 

Technical change is estimated for each class at the sample means using the estimated 

parameters and the elasticity formula given by equation [6]. The hypothetical technical 

change rate is also estimated for each class assuming an alternative technology and the 

differences between real and hypothetical rates of technical change compared. These two 

core measures deliver evidence on the distribution of productivity and technical change 

over different farm classes and also allow inferences with regard to potential productivity 

increases as well as technical change rate accelerations by facilitating farms’ switch to more 

productive technologies over time. 

17. The next analytical performance measure that is derived from the constrained 

flexible and fully flexible TL production functions are first-order elasticities with respect 

to the primary output (e.g. dairy or crop related output) for each class c. These first-order 

elasticities in terms of primary output Y represent the (proportional) shape of the 

production function (given other inputs) for input Xk - or input contributions to primary 

output respectively. The estimated output elasticity with respect to input k 

𝜖𝑦,𝑘 |𝑐 = (
𝜕𝑌

𝜕𝑋𝑘
∗ [

𝑋𝑘

𝑌
]) |𝑐 = 𝛽𝑘,𝑐 + 

1

2
𝛽𝑘𝑘,𝑐𝑙𝑛𝑥𝑘𝑖 + ∑ 𝛾𝑘𝑙,𝑐𝑙𝑛𝑥𝑙𝑖

𝑛

𝑙=𝑘+1

+  𝛿𝑘𝑇,𝑐𝑡𝑖 

[7] 
 

would be expected to be positive, with its magnitude representing the (proportional) 

marginal productivity of Xk. Second-order own-elasticities may be computed to confirm 

that the curvature of these functions satisfies regularity conditions; the marginal 

productivity is expected to increase at a decreasing rate, so second derivatives with respect 

to Xk are expected to be negative to fulfil the concept of a well-defined functional 

representation of the production problem under consideration. Input elasticities give insight 
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into the relative productivity of different inputs given the production context. The policy 

maker is, hence, able to evaluate the marginal contribution of each input to overall 

production at farm and sectoral levels and therefore its relative importance for the type of 

production. Linked to the technology class related analysis performed here, input 

elasticities enable policy makers to evaluate different technologies with respect to their 

relative input intensity and dependence. 

18. Based on the derived first-order elasticities returns to scale are estimated as a linear 

combination of the input elasticities with respect to the primary output. These are simply 

defined as the sum of the input elasticities as follows 

𝑠𝜖𝑦,𝑋 |𝑐 = ∑ (
𝜕𝑌

𝜕𝑋𝑘
∗ [

𝑋𝑘

𝑌
]) |𝑐

𝑛

𝑘=1

= ∑ (𝛽𝑘,𝑐 +  
1

2
𝛽𝑘𝑘,𝑐𝑙𝑛𝑥𝑘𝑖 + ∑ 𝛾𝑘𝑙,𝑐𝑙𝑛𝑥𝑙𝑖

𝑛

𝑙=𝑘+1

+ 𝛿𝑘𝑇,𝑐𝑡𝑖)

𝑛

𝑘=1

 

[8] 
 

Returns to scale allow for empirically informed inferences about the “cost of scale” with 

respect to a type of production at farm and sectoral level. Increasing returns to scale suggest 

extending the production of the specific output to increase the profitability of production 

via lower average costs. Decreasing returns suggest the opposite, i.e. reducing the scale of 

production to increase profitability via lower average costs, and finally constant returns 

suggest that the actual scale of production is approximately near the optimal — most 

efficient — point of scale for the specific firm or sector (ceteris paribus). Policy makers 

are therefore able to design more efficient programmes and measures to more effectively 

enable economies of scale where relevant based on these measures. As a result of the 

simultaneously estimated farm classes, policy makers are able to design such programmes 

more efficiently as the latter are also farm class specific depending on the class 

identification vector (see above). 

19. Finally, second-order or cross-elasticities with respect to input substitution as well 

as input-using or input-saving technical change (biases) can be estimated based on the 

flexible TL production function. These performance measures involve second-order 

derivatives such as, for input substitution, 

𝜖𝑘,𝑙 |𝑐 = (
𝜕2𝑌

𝜕𝑋𝑘𝜕𝑋𝑙
) ∗ [

𝑋𝑙

(
𝜕𝑌

𝜕𝑋𝑘
)

] |𝑐 = (
𝜕𝑀𝑃𝑌,𝑘

𝜕𝑋𝑙
) ∗ [

𝑋𝑙

𝑀𝑃𝑌,𝑘
] |𝑐 =  𝛾𝑘𝑙,𝑐 

[9] 
 

where MPY,k refers to the marginal product of Y with respect to Xk. The elasticity in [9] 

represents the extent to which the marginal product of Xk changes due to changes in Xl. 

The corresponding technical change measure 

𝜖𝑘,𝑇 |𝑐 = (
𝜕2𝑌

𝜕𝑋𝑘𝜕𝑇
) ∗ [

1

(
𝜕𝑌

𝜕𝑋𝑘
)

] |𝑐 = (
𝜕𝑀𝑃𝑌,𝑘

𝜕𝑇
) ∗ [

1

𝑀𝑃𝑌,𝑘
] |𝑐 =  𝛿𝑘𝑇,𝑐 



      │ 9 
 

 
      

[10] 
 

represents the bias in technical change, i.e. whether such technical change is input k-using 

or input k-saving. Accordingly, the input k intensity for farms in class c is increasing or 

decreasing over the time period investigated. Finally, returns to scale (see equation [8]) can 

be analysed whether they are increasing or decreasing over time (depending on technical 

change) for each identified class of farms following: 

𝑠𝜖𝑦,𝑋,𝑇 |𝑐 =
𝜕 ∑ (

𝜕𝑌
𝜕𝑋𝑘

∗ [
𝑋𝑘
𝑌 ])𝑛

𝑘=1

𝜕𝑇
 |𝑐 = ∑( 𝛿𝑘𝑇,𝑐)

𝑛

𝑘=1

 

[11] 

These second-order performance measures rely on the unconstrained flexible functional 

form and deliver empirical evidence on the input substitution patterns and technical change 

biases per class. Policy makers might want to know which type of farm is most effective in 

substituting less sustainable inputs by more sustainable inputs as a reaction to specific 

incentives or regulatory measures. 
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